Skip to content

tinyBigGAMES/Lumina

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

29 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Lumina
Chat on Discord Follow on Bluesky

๐ŸŒŸ Lumina: Advanced Local Generative AI for Delphi Developers ๐Ÿ’ป๐Ÿค–

Lumina offers a cutting-edge ๐Ÿ› ๏ธ for Delphi developers to seamlessly integrate advanced generative AI capabilities into their ๐Ÿ“ฑ. Built on the computational backbone of llama.cpp ๐Ÿช, Lumina prioritizes data privacy ๐Ÿ”’, performance โšก, and a user-friendly API ๐Ÿ“š, making it a powerful tool for local AI inference ๐Ÿค–.

๐Ÿง Why Choose Lumina?

  • Localized Processing ๐Ÿ : Operates entirely offline, ensuring sensitive data remains confidential ๐Ÿ›ก๏ธ while offering complete computational control ๐Ÿง .
  • Broad Model Compatibility ๐ŸŒ: Supports GGUF models compliant with llama.cpp standards, granting access to diverse AI architectures ๐Ÿงฉ.
  • Intuitive Development Interface ๐ŸŽ›๏ธ: A concise, flexible API simplifies model management ๐Ÿ—‚๏ธ, inference execution ๐Ÿงฎ, and callback customization ๐ŸŽš๏ธ, minimizing implementation complexity.
  • Future-Ready Scalability ๐Ÿš€: This release emphasizes stability ๐Ÿ—๏ธ and foundational features, with plans for multi-turn conversation ๐Ÿ’ฌ and retrieval-augmented generation (RAG) ๐Ÿ” in future updates.

๐Ÿ› ๏ธ Key Functionalities

๐Ÿค– Advanced AI Integration

Lumina expands your development toolkit ๐ŸŽ’ with capabilities such as:

  • Dynamic chatbot creation ๐Ÿ’ฌ.
  • Automated text generation ๐Ÿ“ and summarization ๐Ÿ“ฐ.
  • Context-sensitive content generation โœ๏ธ.
  • Real-time inference for adaptive processes โšก.

๐Ÿ”’ Privacy-Driven AI Execution

  • Operates independently of external networks ๐Ÿ›ก๏ธ, guaranteeing data security.
  • Uses Vulkan ๐Ÿ–ฅ๏ธ for optional GPU acceleration to enhance performance.

โš™๏ธ Performance Optimization

  • Configurable GPU utilization through the AGPULayers parameter ๐Ÿงฉ.
  • Dynamic thread allocation based on hardware capabilities ๐Ÿ–ฅ๏ธ via AMaxThreads.
  • Comprehensive performance metrics ๐Ÿ“Š, offering insights into throughput ๐Ÿ“ˆ and efficiency.

๐Ÿ”— Streamlined Integration

  • Embedded dependencies eliminate the need for external libraries ๐Ÿ“ฆ.
  • Lightweight architecture (~2.5MB overhead) ensures broad deployment compatibility ๐ŸŒ.

๐Ÿ“ฅ Installation

  1. Download the Repository ๐Ÿ“ฆ

    • Download here and extract the files to your preferred directory ๐Ÿ“‚.
  2. Acquire a GGUF Model ๐Ÿง 

  3. Ensure GPU Compatibility ๐ŸŽฎ

    • Verify Vulkan compatibility for enhanced performance โšก. Adjust AGPULayers as needed to accommodate VRAM limitations ๐Ÿ“‰.
  4. โœจ TLumina Class

    • ๐Ÿ“œ Add Lumina to your uses section.
    • ๐Ÿ› ๏ธ Create an instance of TLumina.
    • ๐Ÿš€ All functionality will then be at your disposal. That simple! ๐ŸŽ‰
  5. Explore Examples ๐Ÿ”

    • Check the examples directory for detailed usage demonstrations ๐Ÿ“š.

๐Ÿ› ๏ธ Usage

๐Ÿ”ง Basic Setup

Integrate Lumina into your Delphi project ๐Ÿ–ฅ๏ธ:

var
  Lumina: TLumina;
begin
  Lumina := TLumina.Create;
  try
    if Lumina.LoadModel('C:\LLM\GGUF\gemma-2-2b-it-abliterated-Q8_0.gguf',
      '', 8192, -1, 8) then
    begin
      if Lumina.SimpleInference('What is the capital of Italy?') then
        WriteLn('Inference completed successfully.')
      else
        WriteLn('Error: ', Lumina.GetError);
    end;
  finally
    Lumina.Free;
  end;
end;

๐ŸŽš๏ธ Customizing Callbacks

Define custom behavior using Luminaโ€™s callback functions ๐Ÿ› ๏ธ:

procedure NextTokenCallback(const AToken: string; const AUserData: Pointer);
begin
  Write(AToken);
end;

Lumina.SetNextTokenCallback(NextTokenCallback, nil);

๐Ÿ“– API Reference

๐Ÿงฉ Core Methods

  • LoadModel ๐Ÿ“‚

    • Parameters:
      • AModelFilename: Path to the GGUF model file ๐Ÿ“„.
      • ATemplate: Optional inference template ๐Ÿ“.
      • AMaxContext: Maximum context size (default: 512) ๐Ÿง .
      • AGPULayers: GPU layer configuration (-1 for maximum) ๐ŸŽฎ.
      • AMaxThreads: Number of CPU threads allocated ๐Ÿ–ฅ๏ธ.
    • Returns a boolean indicating success โœ….
  • SimpleInference ๐Ÿง 

    • Accepts a single query for immediate processing ๐Ÿ“.
    • Returns a boolean indicating success โœ….
  • SetNextTokenCallback ๐Ÿ’ฌ

    • Assigns a handler to process tokens during inference ๐Ÿงฉ.
  • UnloadModel โŒ

    • Frees resources allocated during model loading ๐Ÿ—‘๏ธ.
  • GetPerformanceResult ๐Ÿ“Š

    • Provides metrics, including token generation rates ๐Ÿ“ˆ.

๐Ÿ› ๏ธ Advanced Configurations

๐Ÿง  Custom Inference Templates

Lumina will use the template defined in the model's meta data by default, but you can also define custom templates to match your modelโ€™s requirements or change its behavor. These are some common model templates โœ๏ธ:

const
  CHATML_TEMPLATE = '<|im_start|>{role} {content}<|im_end|><|im_start|>assistant';
  GEMMA_TEMPLATE  = '<start_of_turn>{role} {content}<end_of_turn>';
  PHI_TEMPLATE    = '<|{role}|> {content}<|end|><|assistant|>';
  • {role} - will be replaced with the role (user, assistant, etc.)
  • {content} - will be replaced with the content sent to the model

๐ŸŽฎ GPU Optimization

  • AGPULayers values:
    • -1: Utilize all available layers (default) ๐Ÿ–ฅ๏ธ.
    • 0: CPU-only processing ๐Ÿ–ฅ๏ธ.
    • Custom values for partial GPU utilization ๐ŸŽ›๏ธ.

๐Ÿ“Š Performance Metrics

Retrieve detailed operational metrics ๐Ÿ“ˆ:

var
  Perf: TLumina.PerformanceResult;
begin
  Perf := Lumina.GetPerformanceResult;
  WriteLn('Tokens/Sec: ', Perf.TokensPerSecond);
  WriteLn('Input Tokens: ', Perf.TotalInputTokens);
  WriteLn('Output Tokens: ', Perf.TotalOutputTokens);
end;

๐ŸŽ™๏ธ Media

๐ŸŒŠ Deep Dive Podcast

Discover in-depth discussions and insights about Lumina and its innovative features. ๐Ÿš€โœจ

Lumina.Deep.Dive.mp4

๐Ÿ› ๏ธ Support and Resources

๐Ÿค Contributing

Contributions to โœจ Lumina are highly encouraged! ๐ŸŒŸ

  • ๐Ÿ› Report Issues: Submit issues if you encounter bugs or need help.
  • ๐Ÿ’ก Suggest Features: Share your ideas to make Lumina even better.
  • ๐Ÿ”ง Create Pull Requests: Help expand the capabilities and robustness of the library.

Your contributions make a difference! ๐Ÿ™Œโœจ

Contributors ๐Ÿ‘ฅ๐Ÿค


๐Ÿ“œ Licensing

Lumina is distributed under the ๐Ÿ†“ BSD-3-Clause License, allowing for redistribution and use in both source and binary forms, with or without modification, under specific conditions. See the LICENSE file for more details.


Advance your Delphi applications with Lumina ๐ŸŒŸ โ€“ a sophisticated solution for integrating local generative AI ๐Ÿค–.

Delphi

Made with โค๏ธ in Delphi