Skip to content

Commit

Permalink
Merge pull request #461 from sebp/sklearn-1-5
Browse files Browse the repository at this point in the history
Add support for scikit-learn 1.5
  • Loading branch information
sebp authored Jun 8, 2024
2 parents 10af97a + ce1f061 commit bceb53e
Show file tree
Hide file tree
Showing 11 changed files with 37 additions and 29 deletions.
2 changes: 1 addition & 1 deletion README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ Requirements
- numpy
- osqp
- pandas 1.0.5 or later
- scikit-learn 1.4
- scikit-learn 1.4 or 1.5
- scipy
- C/C++ compiler

Expand Down
2 changes: 1 addition & 1 deletion ci/appveyor/py311.ps1
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
$env:CI_PYTHON_VERSION="3.11.*"
$env:CI_PANDAS_VERSION="2.0.*"
$env:CI_NUMPY_VERSION="1.25.*"
$env:CI_SKLEARN_VERSION="1.4.*"
$env:CI_SKLEARN_VERSION="1.5.*"
2 changes: 1 addition & 1 deletion ci/appveyor/py312.ps1
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
$env:CI_PYTHON_VERSION="3.12.*"
$env:CI_PANDAS_VERSION="2.2.*"
$env:CI_NUMPY_VERSION="1.26.*"
$env:CI_SKLEARN_VERSION="1.4.*"
$env:CI_SKLEARN_VERSION="1.5.*"
2 changes: 1 addition & 1 deletion ci/deps/py311.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,5 +2,5 @@
export CI_PYTHON_VERSION='3.11.*'
export CI_PANDAS_VERSION='2.0.*'
export CI_NUMPY_VERSION='1.25.*'
export CI_SKLEARN_VERSION='1.4.*'
export CI_SKLEARN_VERSION='1.5.*'
export CI_NO_SLOW=true
2 changes: 1 addition & 1 deletion ci/deps/py312.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,5 +2,5 @@
export CI_PYTHON_VERSION='3.12.*'
export CI_PANDAS_VERSION='2.2.*'
export CI_NUMPY_VERSION='1.26.*'
export CI_SKLEARN_VERSION='1.4.*'
export CI_SKLEARN_VERSION='1.5.*'
export CI_NO_SLOW=false
2 changes: 1 addition & 1 deletion doc/install.rst
Original file line number Diff line number Diff line change
Expand Up @@ -91,6 +91,6 @@ The current minimum dependencies to run scikit-survival are:
- numpy
- osqp
- pandas 1.0.5 or later
- scikit-learn 1.4
- scikit-learn 1.4 or 1.5
- scipy
- C/C++ compiler
18 changes: 9 additions & 9 deletions doc/user_guide/00-introduction.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -1187,15 +1187,15 @@
"</div>"
],
"text/plain": [
" param_select__k params split0_test_score split1_test_score \\\n",
"4 5 {'select__k': 5} 0.716093 0.719862 \n",
"3 4 {'select__k': 4} 0.697368 0.722332 \n",
"7 8 {'select__k': 8} 0.706478 0.723320 \n",
"5 6 {'select__k': 6} 0.704453 0.719368 \n",
"6 7 {'select__k': 7} 0.700405 0.719368 \n",
"1 2 {'select__k': 2} 0.699393 0.717885 \n",
"0 1 {'select__k': 1} 0.698887 0.707510 \n",
"2 3 {'select__k': 3} 0.708502 0.714427 \n",
" param_select__k params split0_test_score split1_test_score \\\n",
"4 5 {'select__k': 5} 0.716093 0.719862 \n",
"3 4 {'select__k': 4} 0.697368 0.722332 \n",
"7 8 {'select__k': 8} 0.706478 0.723320 \n",
"5 6 {'select__k': 6} 0.704453 0.719368 \n",
"6 7 {'select__k': 7} 0.700405 0.719368 \n",
"1 2 {'select__k': 2} 0.699393 0.717885 \n",
"0 1 {'select__k': 1} 0.698887 0.707510 \n",
"2 3 {'select__k': 3} 0.708502 0.714427 \n",
"\n",
" split2_test_score mean_test_score std_test_score rank_test_score \\\n",
"4 0.716685 0.717547 0.001655 1 \n",
Expand Down
8 changes: 5 additions & 3 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,9 @@ requires = [
"setuptools-scm>=8",
"packaging",
# same as scikit-learn
"Cython>=3.0.8",
"Cython>=3.0.10",
# building against numpy 2.x is compatible with numpy 1.x
"numpy>=2.0.0rc1",
"numpy>=2.0.0rc2",

# scikit-learn requirements
"scikit-learn~=1.4.0; python_version<='3.12'",
Expand Down Expand Up @@ -50,7 +50,7 @@ dependencies = [
"osqp !=0.6.0,!=0.6.1",
"pandas >=1.0.5",
"scipy >=1.3.2",
"scikit-learn >=1.4.0,<1.5",
"scikit-learn >=1.4.0,<1.6",
]
dynamic = ["version"]

Expand Down Expand Up @@ -138,6 +138,8 @@ filterwarnings = [
"ignore:np\\.find_common_type is deprecated. Please use `np\\.result_type` or `np\\.promote_types`:DeprecationWarning",
# deprecated since NumPy 2.0
"ignore:`trapz` is deprecated\\. Use `trapezoid` instead.*:DeprecationWarning",
# deprecated since scikit-learn 1.5
"ignore:'multi_class' was deprecated in version 1\\.5 and will be removed in 1\\.7.*:FutureWarning",
]

[tool.coverage.run]
Expand Down
7 changes: 5 additions & 2 deletions sksurv/kernels/clinical.py
Original file line number Diff line number Diff line change
Expand Up @@ -174,7 +174,7 @@ def _prepare_by_column_dtype(self, X):
nominal_columns = []
numeric_ranges = []

fit_data = np.empty_like(X)
fit_data = np.empty(X.shape, dtype=np.float64)

for i, dt in enumerate(X.dtypes):
col = X.iloc[:, i]
Expand Down Expand Up @@ -310,7 +310,10 @@ def pairwise_kernel(self, X, Y):
"""
check_is_fitted(self, "X_fit_")
if X.shape[0] != Y.shape[0]:
raise ValueError("X and Y have different number of features")
raise ValueError(
f"Incompatible dimension for X and Y matrices: X.shape[0] == {X.shape[0]} "
f"while Y.shape[0] == {Y.shape[0]}"
)

val = pairwise_continuous_ordinal_kernel(
X[self._numeric_columns], Y[self._numeric_columns], self._numeric_ranges
Expand Down
9 changes: 6 additions & 3 deletions tests/test_clinical_kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -228,7 +228,10 @@ def test_pairwise_x_and_y_error_shape(make_data):
t = ClinicalKernelTransform()
t.fit(data)

with pytest.raises(ValueError, match="X and Y have different number of features"):
with pytest.raises(
ValueError,
match=r"Incompatible dimension for X and Y matrices: X\.shape\[0\] == 4 while Y\.shape\[0\] == 2",
):
t.pairwise_kernel(data.iloc[0, :], data.iloc[1, :2])

@staticmethod
Expand Down Expand Up @@ -269,9 +272,9 @@ def test_pairwise_feature_mismatch(make_data):

with pytest.raises(
ValueError,
match=r"Incompatible dimension for X and Y matrices: X.shape\[1\] == 4 while Y.shape\[1\] == 17",
match=r"Incompatible dimension for X and Y matrices: X\.shape\[[0-1]\] == 4 while Y\.shape\[[0-1]\] == 17",
):
pairwise_kernels(t.X_fit_, np.zeros((2, 17), dtype=float), metric=t.pairwise_kernel, n_jobs=1)
pairwise_kernels(t.X_fit_, np.zeros((5, 17), dtype=float), metric=t.pairwise_kernel, n_jobs=1)

@staticmethod
def test_prepare(make_data):
Expand Down
12 changes: 6 additions & 6 deletions tests/test_stacking.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,13 +42,13 @@ def dummy_data():

@pytest.fixture()
def iris_data_with_estimator():
def _make_estimator(**params):
def _make_estimator():
data = load_iris()
x = data["data"]
y = data["target"]

meta = Stacking(
LogisticRegression(**params),
LogisticRegression(solver="lbfgs", multi_class="multinomial"),
[
("tree", DecisionTreeClassifier(max_depth=1, random_state=0)),
("svm", SVC(probability=True, gamma="auto", random_state=0)),
Expand Down Expand Up @@ -104,7 +104,7 @@ def test_names_not_unique(dummy_data):

@staticmethod
def test_fit(iris_data_with_estimator):
x, y, meta = iris_data_with_estimator(solver="liblinear", multi_class="ovr")
x, y, meta = iris_data_with_estimator()
assert 2 == len(meta)
meta.fit(x, y)

Expand All @@ -115,7 +115,7 @@ def test_fit(iris_data_with_estimator):

@staticmethod
def test_fit_sample_weights(iris_data_with_estimator):
x, y, meta = iris_data_with_estimator(solver="liblinear", multi_class="ovr")
x, y, meta = iris_data_with_estimator()

sample_weight = np.random.RandomState(0).uniform(size=x.shape[0])
meta.fit(x, y, tree__sample_weight=sample_weight, svm__sample_weight=sample_weight)
Expand Down Expand Up @@ -147,7 +147,7 @@ def test_set_params():

@staticmethod
def test_predict(iris_data_with_estimator):
x, y, meta = iris_data_with_estimator(multi_class="multinomial", solver="lbfgs")
x, y, meta = iris_data_with_estimator()
assert 2 == len(meta)
meta.fit(x, y)
p = meta.predict(x)
Expand All @@ -158,7 +158,7 @@ def test_predict(iris_data_with_estimator):
@staticmethod
@pytest.mark.parametrize("method", ["predict_proba", "predict_log_proba"])
def test_predict_proba(iris_data_with_estimator, method):
x, y, meta = iris_data_with_estimator(multi_class="multinomial", solver="lbfgs")
x, y, meta = iris_data_with_estimator()
meta.fit(x, y)
p = getattr(meta, method)(x)

Expand Down

0 comments on commit bceb53e

Please sign in to comment.