-
Notifications
You must be signed in to change notification settings - Fork 140
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #896 from roboflow/workflows/outlier-sampling
Workflows: Outlier Detection Blocks
- Loading branch information
Showing
9 changed files
with
602 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
Empty file.
277 changes: 277 additions & 0 deletions
277
inference/core/workflows/core_steps/sampling/identify_changes/v1.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,277 @@ | ||
from typing import List, Literal, Optional, Type, Union | ||
|
||
import numpy as np | ||
from pydantic import ConfigDict, Field, model_validator | ||
|
||
from inference.core.utils.postprocess import cosine_similarity | ||
from inference.core.workflows.execution_engine.entities.base import OutputDefinition | ||
from inference.core.workflows.execution_engine.entities.types import ( | ||
BOOLEAN_KIND, | ||
EMBEDDING_KIND, | ||
FLOAT_KIND, | ||
FLOAT_ZERO_TO_ONE_KIND, | ||
INTEGER_KIND, | ||
Selector, | ||
) | ||
from inference.core.workflows.prototypes.block import ( | ||
BlockResult, | ||
WorkflowBlock, | ||
WorkflowBlockManifest, | ||
) | ||
|
||
LONG_DESCRIPTION = """ | ||
Identify changes compared to prior data via embeddings. | ||
This block accepts an embedding and compares it to a prior average | ||
and standard deviation for the rate of change. When things change | ||
faster or slower than they have in the past, the block will flag | ||
the data as an outlier. | ||
""" | ||
|
||
|
||
class BlockManifest(WorkflowBlockManifest): | ||
model_config = ConfigDict( | ||
json_schema_extra={ | ||
"name": "Identify Changes", | ||
"version": "v1", | ||
"short_description": "Identify changes compared to prior data via embeddings.", | ||
"long_description": LONG_DESCRIPTION, | ||
"license": "MIT", | ||
"block_type": "video", | ||
"ui_manifest": { | ||
"section": "video", | ||
"icon": "far fa-triangle", | ||
}, | ||
} | ||
) | ||
type: Literal["roboflow_core/identify_changes@v1"] | ||
name: str = Field(description="Unique name of step in workflows") | ||
|
||
strategy: Literal[ | ||
"Exponential Moving Average (EMA)", | ||
"Simple Moving Average (SMA)", | ||
"Sliding Window", | ||
] = Field( | ||
default="Exponential Moving Average (EMA)", | ||
description="The change identification algorithm to use.", | ||
examples=["Simple Moving Average (SMA)"], | ||
json_schema_extra={ | ||
"always_visible": True, | ||
}, | ||
) | ||
|
||
embedding: Selector(kind=[EMBEDDING_KIND]) = Field( | ||
description="Embedding of the current data.", | ||
examples=["$steps.clip.embedding"], | ||
) | ||
|
||
threshold_percentile: Union[Selector(kind=[FLOAT_ZERO_TO_ONE_KIND]), float] = Field( | ||
default=0.2, | ||
description="The desired sensitivity. A higher value will result in more data points being classified as outliers.", | ||
examples=["$inputs.sample_rate", 0.01], | ||
json_schema_extra={ | ||
"always_visible": True, | ||
}, | ||
) | ||
|
||
warmup: Union[Selector(kind=[INTEGER_KIND]), int] = Field( | ||
default=3, | ||
description="The number of data points to use for the initial average calculation. No outliers are identified during this period.", | ||
examples=[100], | ||
) | ||
|
||
smoothing_factor: Optional[ | ||
Union[Selector(kind=[FLOAT_ZERO_TO_ONE_KIND]), float] | ||
] = Field( | ||
default=0.1, | ||
description="The smoothing factor for the EMA algorithm. The default of 0.25 means the most recent data point will carry 25% weight in the average. Higher values will make the average more responsive to recent data points.", | ||
examples=[0.1], | ||
json_schema_extra={ | ||
"relevant_for": { | ||
"strategy": { | ||
"values": {"Exponential Moving Average (EMA)"}, | ||
}, | ||
}, | ||
}, | ||
) | ||
|
||
window_size: Optional[Union[Selector(kind=[INTEGER_KIND]), int]] = Field( | ||
default=10, | ||
description="The number of data points to consider in the sliding window algorithm.", | ||
examples=[5], | ||
json_schema_extra={ | ||
"relevant_for": { | ||
"strategy": {"values": {"Sliding Window"}, "required": True}, | ||
}, | ||
}, | ||
) | ||
|
||
@classmethod | ||
def describe_outputs(cls) -> List[OutputDefinition]: | ||
return [ | ||
OutputDefinition(name="is_outlier", kind=[BOOLEAN_KIND]), | ||
OutputDefinition(name="percentile", kind=[FLOAT_ZERO_TO_ONE_KIND]), | ||
OutputDefinition(name="z_score", kind=[FLOAT_KIND]), | ||
OutputDefinition(name="average", kind=[EMBEDDING_KIND]), | ||
OutputDefinition(name="std", kind=[EMBEDDING_KIND]), | ||
OutputDefinition(name="warming_up", kind=[BOOLEAN_KIND]), | ||
] | ||
|
||
@classmethod | ||
def get_execution_engine_compatibility(cls) -> Optional[str]: | ||
return ">=1.3.0,<2.0.0" | ||
|
||
|
||
class IdentifyChangesBlockV1(WorkflowBlock): | ||
def __init__(self): | ||
self.average = None | ||
self.std = None | ||
self.var = None # For EMA variance tracking | ||
self.M2 = None # For SMA variance tracking | ||
self.sliding_window = [] | ||
self.samples = 0 | ||
|
||
self.cosine_similarity_avg = None | ||
self.cosine_similarity_std = None | ||
self.cosine_similarity_var = None | ||
self.cosine_similarity_m2 = None | ||
self.cosine_similarity_sliding_window = [] | ||
|
||
@classmethod | ||
def get_manifest(cls) -> Type[WorkflowBlockManifest]: | ||
return BlockManifest | ||
|
||
def run( | ||
self, | ||
strategy: str, | ||
embedding: List[float], | ||
threshold_percentile: float, | ||
smoothing_factor: float, | ||
window_size: int, | ||
warmup: int, | ||
) -> BlockResult: | ||
is_outlier = False | ||
percentile = 0.5 | ||
z_score = 0 | ||
warming_up = False | ||
|
||
embedding = np.array(embedding) | ||
norm = np.linalg.norm(embedding) | ||
if norm != 0: | ||
embedding = embedding / norm | ||
|
||
# determine if embedding is an outlier | ||
if self.average is not None: | ||
cs = cosine_similarity(embedding, self.average) | ||
|
||
if self.cosine_similarity_avg is None: | ||
self.cosine_similarity_avg = cs | ||
self.cosine_similarity_std = 0 | ||
self.cosine_similarity_var = 0 | ||
self.cosine_similarity_m2 = 0 | ||
else: | ||
if strategy == "Exponential Moving Average (EMA)": | ||
# Update EMA average: | ||
self.cosine_similarity_avg = ( | ||
1 - smoothing_factor | ||
) * self.cosine_similarity_avg + smoothing_factor * cs | ||
|
||
# Update EMA variance: | ||
# var_new = (1 - alpha)*var_old + alpha*(x - new_avg)^2 | ||
diff = cs - self.cosine_similarity_avg | ||
self.cosine_similarity_var = ( | ||
1 - smoothing_factor | ||
) * self.cosine_similarity_var + smoothing_factor * (diff**2) | ||
self.cosine_similarity_std = np.sqrt(self.cosine_similarity_var) | ||
elif strategy == "Simple Moving Average (SMA)": | ||
count = self.samples + 1 | ||
delta = cs - self.cosine_similarity_avg | ||
|
||
self.cosine_similarity_avg = ( | ||
cs / count + self.cosine_similarity_avg * self.samples / count | ||
) | ||
delta2 = cs - self.cosine_similarity_avg | ||
|
||
self.cosine_similarity_m2 = ( | ||
self.cosine_similarity_m2 + delta * delta2 | ||
) | ||
var = self.cosine_similarity_m2 / (count - 1) | ||
self.cosine_similarity_std = np.sqrt(var) | ||
elif strategy == "Sliding Window": | ||
self.cosine_similarity_sliding_window.append(cs) | ||
if len(self.cosine_similarity_sliding_window) > window_size: | ||
self.cosine_similarity_sliding_window.pop(0) | ||
|
||
self.cosine_similarity_avg = np.mean( | ||
self.cosine_similarity_sliding_window | ||
) | ||
self.cosine_similarity_std = np.std( | ||
self.cosine_similarity_sliding_window | ||
) | ||
|
||
z_score = (cs - self.cosine_similarity_avg) / self.cosine_similarity_std | ||
percentile = 1 - 0.5 * (1 + np.math.erf(z_score / np.sqrt(2))) | ||
|
||
# print(f"Z-score: {z_score}, Percentile: {percentile}, Cosine Similarity: {cs}, Average: {self.cosine_similarity_avg}, Std: {self.cosine_similarity_std}") | ||
|
||
if self.samples < warmup: | ||
is_outlier = False | ||
warming_up = True | ||
else: | ||
is_outlier = percentile <= threshold_percentile / 2 or percentile >= ( | ||
1 - threshold_percentile / 2 | ||
) | ||
|
||
# update average and std | ||
if self.average is None: | ||
self.average = embedding | ||
self.std = np.zeros_like(embedding) | ||
self.var = np.zeros_like(embedding) | ||
self.M2 = np.zeros_like(embedding) | ||
else: | ||
if strategy == "Exponential Moving Average (EMA)": | ||
# Update EMA average: | ||
self.average = ( | ||
1 - smoothing_factor | ||
) * self.average + smoothing_factor * embedding | ||
|
||
# Update EMA variance: | ||
# var_new = (1 - alpha)*var_old + alpha*(x - new_avg)^2 | ||
diff = embedding - self.average | ||
self.var = (1 - smoothing_factor) * self.var + smoothing_factor * ( | ||
diff**2 | ||
) | ||
self.std = np.sqrt(self.var) | ||
|
||
elif strategy == "Simple Moving Average (SMA)": | ||
# Use Welford's method to update mean and variance | ||
count = self.samples + 1 | ||
delta = embedding - self.average | ||
|
||
# Update average: | ||
self.average = self.average + delta / count | ||
delta2 = embedding - self.average | ||
|
||
# Update M2: | ||
self.M2 = self.M2 + delta * delta2 | ||
var = self.M2 / (count - 1) | ||
self.std = np.sqrt(var) | ||
|
||
elif strategy == "Sliding Window": | ||
self.sliding_window.append(embedding) | ||
if len(self.sliding_window) > window_size: | ||
self.sliding_window.pop(0) | ||
|
||
self.average = np.mean(self.sliding_window, axis=0) | ||
self.std = np.std(self.sliding_window, axis=0) | ||
|
||
self.samples = self.samples + 1 | ||
|
||
return { | ||
"is_outlier": is_outlier, | ||
"percentile": percentile, | ||
"z_score": z_score, | ||
"average": self.average.tolist(), | ||
"std": self.std.tolist(), | ||
"warming_up": warming_up, | ||
} |
Empty file.
Oops, something went wrong.