-
Notifications
You must be signed in to change notification settings - Fork 140
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #895 from roboflow/workflows/grid-visualization
Workflows Grid Visualization Block
- Loading branch information
Showing
4 changed files
with
303 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
202 changes: 202 additions & 0 deletions
202
inference/core/workflows/core_steps/visualizations/grid/v1.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
import math | ||
import uuid | ||
from typing import List, Literal, Optional, Type, Union | ||
|
||
import cv2 | ||
import numpy as np | ||
from pydantic import ConfigDict, Field | ||
|
||
from inference.core.cache.lru_cache import LRUCache | ||
from inference.core.workflows.core_steps.visualizations.common.base import ( | ||
OUTPUT_IMAGE_KEY, | ||
) | ||
from inference.core.workflows.execution_engine.entities.base import ( | ||
ImageParentMetadata, | ||
OutputDefinition, | ||
WorkflowImageData, | ||
) | ||
from inference.core.workflows.execution_engine.entities.types import ( | ||
IMAGE_KIND, | ||
INTEGER_KIND, | ||
LIST_OF_VALUES_KIND, | ||
Selector, | ||
) | ||
from inference.core.workflows.prototypes.block import ( | ||
BlockResult, | ||
WorkflowBlock, | ||
WorkflowBlockManifest, | ||
) | ||
|
||
TYPE: str = "roboflow_core/grid_visualization@v1" | ||
SHORT_DESCRIPTION = "Shows an array of images in a grid." | ||
LONG_DESCRIPTION = """ | ||
The `GridVisualization` block displays an array of images in a grid. | ||
It will automatically resize the images to in the specified width and | ||
height. The first image will be in the top left corner, and the rest | ||
will be added to the right of the previous image until the row is full. | ||
""" | ||
|
||
|
||
class GridVisualizationManifest(WorkflowBlockManifest): | ||
type: Literal[f"{TYPE}"] | ||
model_config = ConfigDict( | ||
json_schema_extra={ | ||
"name": "Grid Visualization", | ||
"version": "v1", | ||
"short_description": SHORT_DESCRIPTION, | ||
"long_description": LONG_DESCRIPTION, | ||
"license": "Apache-2.0", | ||
"block_type": "visualization", | ||
"ui_manifest": { | ||
"section": "visualization", | ||
"icon": "far fa-grid", | ||
}, | ||
} | ||
) | ||
|
||
images: Selector(kind=[LIST_OF_VALUES_KIND]) = Field( # type: ignore | ||
description="Images to visualize", | ||
examples=["$steps.buffer.output"], | ||
) | ||
|
||
width: Union[int, Selector(kind=[INTEGER_KIND])] = Field( # type: ignore | ||
description="Width of the output image.", | ||
default=2560, | ||
examples=[2560, "$inputs.width"], | ||
) | ||
|
||
height: Union[int, Selector(kind=[INTEGER_KIND])] = Field( # type: ignore | ||
description="Height of the output image.", | ||
default=1440, | ||
examples=[1440, "$inputs.height"], | ||
) | ||
|
||
@classmethod | ||
def describe_outputs(cls) -> List[OutputDefinition]: | ||
return [ | ||
OutputDefinition( | ||
name=OUTPUT_IMAGE_KEY, | ||
kind=[ | ||
IMAGE_KIND, | ||
], | ||
), | ||
] | ||
|
||
@classmethod | ||
def get_execution_engine_compatibility(cls) -> Optional[str]: | ||
return ">=1.3.0,<2.0.0" | ||
|
||
|
||
class GridVisualizationBlockV1(WorkflowBlock): | ||
def __init__(self, *args, **kwargs): | ||
super().__init__(*args, **kwargs) | ||
self.prev_input = None | ||
self.prev_output = None | ||
|
||
self.thumbCache = LRUCache() | ||
|
||
@classmethod | ||
def get_manifest(cls) -> Type[WorkflowBlockManifest]: | ||
return GridVisualizationManifest | ||
|
||
def run( | ||
self, images: List[WorkflowImageData], width: int, height: int | ||
) -> BlockResult: | ||
# use previous result if input hasn't changed | ||
if self.prev_output is not None: | ||
if len(self.prev_input) == len(images) and all( | ||
self.prev_input[i] == images[i] for i in range(len(images)) | ||
): | ||
return {OUTPUT_IMAGE_KEY: self.prev_output} | ||
|
||
self.thumbCache.set_max_size(len(images) + 1) | ||
output = self.getImageFor(images, width, height) | ||
|
||
self.prev_input = images | ||
self.prev_output = output | ||
|
||
return {OUTPUT_IMAGE_KEY: output} | ||
|
||
def getImageFor( | ||
self, images: List[WorkflowImageData], width: int, height: int | ||
) -> WorkflowImageData: | ||
if images is None or len(images) == 0: | ||
return self.getEmptyImage(width, height) | ||
else: | ||
np_image = self.createGrid(images, width, height) | ||
return WorkflowImageData.copy_and_replace( | ||
origin_image_data=images[0], numpy_image=np_image | ||
) | ||
|
||
def getEmptyImage(self, width: int, height: int) -> WorkflowImageData: | ||
return WorkflowImageData( | ||
parent_metadata=ImageParentMetadata(parent_id=str(uuid.uuid4())), | ||
numpy_image=np.zeros((height, width, 3), dtype=np.uint8), | ||
) | ||
|
||
def createGrid( | ||
self, images: List[WorkflowImageData], width: int, height: int | ||
) -> WorkflowImageData: | ||
grid_size = math.ceil(math.sqrt(len(images))) | ||
img = np.zeros((height, width, 3), dtype=np.uint8) | ||
|
||
cell_width = width // grid_size | ||
cell_height = height // grid_size | ||
|
||
for r in range(grid_size): | ||
for c in range(grid_size): | ||
index = r * grid_size + c | ||
|
||
if index >= len(images): | ||
break | ||
|
||
if images[index] is None: | ||
continue | ||
|
||
cacheKey = f"{id(images[index])}_{cell_width}_{cell_height}" | ||
if self.thumbCache.get(cacheKey) is None: | ||
self.thumbCache.set( | ||
cacheKey, | ||
self.resizeImage( | ||
images[index].numpy_image, cell_width, cell_height | ||
), | ||
) | ||
img_data = self.thumbCache.get(cacheKey) | ||
|
||
img_data_height, img_data_width, _ = img_data.shape | ||
|
||
# place image in cell (centered) | ||
start_x = c * cell_width + (cell_width - img_data_width) // 2 | ||
start_y = r * cell_height + (cell_height - img_data_height) // 2 | ||
|
||
# Clamp to avoid negative indices | ||
start_x = max(start_x, 0) | ||
start_y = max(start_y, 0) | ||
|
||
end_x = start_x + img_data_width | ||
end_y = start_y + img_data_height | ||
|
||
# Ensure we do not exceed the canvas boundaries | ||
end_x = min(end_x, width) | ||
end_y = min(end_y, height) | ||
|
||
# If for some reason the image doesn't fit perfectly, we crop it | ||
target_height = end_y - start_y | ||
target_width = end_x - start_x | ||
|
||
img[start_y:end_y, start_x:end_x] = img_data[ | ||
:target_height, :target_width | ||
] | ||
|
||
return img | ||
|
||
def resizeImage(self, img: np.ndarray, width: int, height: int) -> np.ndarray: | ||
img_height, img_width, _ = img.shape | ||
scale_w = width / img_width | ||
scale_h = height / img_height | ||
scale = min(scale_w, scale_h) # choose the scale that fits both dimensions | ||
|
||
new_width = int(img_width * scale) | ||
new_height = int(img_height * scale) | ||
|
||
return cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_AREA) |
97 changes: 97 additions & 0 deletions
97
tests/workflows/unit_tests/core_steps/visualizations/test_grid.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
import numpy as np | ||
|
||
from inference.core.workflows.core_steps.visualizations.grid.v1 import ( | ||
GridVisualizationBlockV1 | ||
) | ||
from inference.core.workflows.execution_engine.entities.base import ( | ||
ImageParentMetadata, | ||
WorkflowImageData, | ||
) | ||
|
||
def test_grid_visualization_block_single() -> None: | ||
# given | ||
block = GridVisualizationBlockV1() | ||
|
||
image = WorkflowImageData( | ||
parent_metadata=ImageParentMetadata(parent_id="some"), | ||
numpy_image=np.zeros((1000, 1000, 3), dtype=np.uint8), | ||
) | ||
|
||
output = block.run( | ||
images=[image], | ||
width=1000, | ||
height=1000 | ||
) | ||
|
||
assert output is not None | ||
assert "image" in output | ||
assert hasattr(output.get("image"), "numpy_image") | ||
|
||
# dimensions of output match input | ||
assert output.get("image").numpy_image.shape == (1000, 1000, 3) | ||
# check that the output is the same as the input | ||
assert np.array_equal( | ||
output.get("image").numpy_image, np.zeros((1000, 1000, 3), dtype=np.uint8) | ||
) | ||
|
||
def test_grid_visualization_block_2x2() -> None: | ||
# given | ||
block = GridVisualizationBlockV1() | ||
|
||
# 1000x1000 black | ||
image_1 = WorkflowImageData( | ||
parent_metadata=ImageParentMetadata(parent_id="some"), | ||
numpy_image=np.zeros((1000, 1000, 3), dtype=np.uint8), | ||
) | ||
# 1000x1000 white | ||
image_2 = WorkflowImageData( | ||
parent_metadata=ImageParentMetadata(parent_id="some"), | ||
numpy_image=np.array([[[255, 255, 255]] * 1000] * 1000, dtype=np.uint8), | ||
) | ||
# 1000x1000 red | ||
image_3 = WorkflowImageData( | ||
parent_metadata=ImageParentMetadata(parent_id="some"), | ||
numpy_image=np.array([[[255, 0, 0]] * 1000] * 1000, dtype=np.uint8), | ||
) | ||
# 1000x1000 green | ||
image_4 = WorkflowImageData( | ||
parent_metadata=ImageParentMetadata(parent_id="some"), | ||
numpy_image=np.array([[[0, 255, 0]] * 1000] * 1000, dtype=np.uint8), | ||
) | ||
|
||
output = block.run( | ||
images=[image_1, image_2, image_3, image_4], | ||
width=400, | ||
height=400 | ||
) | ||
|
||
assert output is not None | ||
assert "image" in output | ||
assert hasattr(output.get("image"), "numpy_image") | ||
|
||
# dimensions of output match params | ||
assert output.get("image").numpy_image.shape == (400, 400, 3) | ||
|
||
# check that each quadrant is the right color | ||
# top left: black | ||
assert np.array_equal( | ||
output.get("image").numpy_image[:200, :200, :], | ||
np.zeros((200, 200, 3), dtype=np.uint8) | ||
) | ||
# top right: white | ||
assert np.array_equal( | ||
output.get("image").numpy_image[:200, 200:, :], | ||
np.array([[[255, 255, 255]] * 200] * 200, dtype=np.uint8) | ||
) | ||
# bottom left: red | ||
assert np.array_equal( | ||
output.get("image").numpy_image[200:, :200, :], | ||
np.array([[[255, 0, 0]] * 200] * 200, dtype=np.uint8) | ||
) | ||
# bottom right: green | ||
assert np.array_equal( | ||
output.get("image").numpy_image[200:, 200:, :], | ||
np.array([[[0, 255, 0]] * 200] * 200, dtype=np.uint8) | ||
) | ||
|
||
|