Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added File Locking Mechanism #1265

Merged
merged 1 commit into from
Oct 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
import cv2
import os
import sys
import numpy as np
import FaceDetection
import warnings
from os import system
import os
warnings.filterwarnings("ignore")
faces=[]
labels=[]
names={}
dirpath = os.getcwd()
training_folder = dirpath+"\\Face_Recognition_Script\\training-data"

def newUser():
name = input("Enter Your Name: ")
dirs = os.listdir(training_folder)
os.makedirs(training_folder+'/'+name+'@'+str(len(dirs)+1))
cap = cv2.VideoCapture(0)
i=0
while (True):
ret, frame = cap.read()
test = frame.copy()
frame,frame_crop,rect = FaceDetection.detect_faces(FaceDetection.lbp_face_cascade,frame)
cv2.imshow('Smile :) with different moods', frame)
cv2.waitKey(50)
if frame_crop!="None" and i<100:
print(training_folder+"/" + name + '@' + str(len(dirs)+1) + '/' + str(i) + '.jpg')
cv2.imwrite(training_folder+"/" + name + '@' + str(len(dirs)+1) + '/' + str(i) + '.jpg', frame_crop)
#cv2.imwrite("sample.jpg",test)
i+=1
elif i>=100:
break

cap.release()
cv2.destroyAllWindows()



def createLables():
dirs = os.listdir(training_folder)
for users in dirs:
lable = int(users[users.find("@")+1:len(users)])
names[lable] = users[0:users.find("@")]
subfolders = training_folder + "/" + users
imagesName = os.listdir(subfolders)
for image in imagesName:
imagePath = subfolders + "/" + image
face = cv2.imread(imagePath)
face = cv2.cvtColor(face,cv2.COLOR_BGR2GRAY)
#cv2.imshow("Training on this image...",face)
#cv2.waitKey(10)
#cv2.destroyAllWindows()
faces.append(face)
labels.append(lable)
#print("Labels: "+ str(labels))
#print("Total Number of Faces: "+str(len(faces)))
#print(names)

face_recognizer = object
def trainDataLBPH():
# create our LBPH face recognizer
#face_recognizer = cv2.
global face_recognizer
if len(labels)>0:
face_recognizer = cv2.face.createLBPHFaceRecognizer()
face_recognizer.train(faces, np.array(labels))
else:
print("No train data is present. Add train data using -train flag.")
sys.exit()
def trainDataEigen():
# or use EigenFaceRecognizer by replacing above line with
if len(labels)>0:
face_recognizer = cv2.face.createEigenFaceRecognizer()
face_recognizer.train(faces, np.array(labels))
else:
print("No train data is present. Add train data using -train flag.")
sys.exit()
def trainDataFisher():
# or use FisherFaceRecognizer by replacing above line with
if len(labels)>0:
face_recognizer = cv2.face.createFisherFaceRecognizer()
face_recognizer.train(faces, np.array(labels))
else:
print("No train data is present. Add train data using -train flag.")
sys.exit()


def draw_rectangle(img, rect):
(x, y, w, h) = rect
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
def draw_text(img, text, x, y):
cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0), 2)


def predict(test_img):
img = test_img
img, face, rect = FaceDetection.detect_faces(FaceDetection.haar_face_cascade,img,1.1)
if face=="None":
pass
else:
face = cv2.cvtColor(np.array(face,dtype=np.uint16),cv2.COLOR_BGR2GRAY)
label,conf = face_recognizer.predict(np.array(face,dtype=np.uint16))
if label==-1:
label_text = "unknown"
else:
label_text = names[label]
draw_rectangle(img, rect)
draw_text(img, label_text, rect[0], rect[1] - 5)

return img

def newUserTest():
cap = cv2.VideoCapture(0)
os.system('cls')
previous_label = ""
while (True):
ret, frame = cap.read()
#test = frame.copy()
frame,frame_crop,rect = FaceDetection.detect_faces(FaceDetection.haar_face_cascade,frame,1.1)
if frame_crop == "None":
pass
else:

frame_crop = cv2.cvtColor(np.array(frame_crop, dtype=np.uint16), cv2.COLOR_BGR2GRAY)
label, conf = face_recognizer.predict(np.array(frame_crop, dtype=np.uint16))
if label == -1:
label_text = "unknown"
else:
label_text = names[label]
#label_text = names[label]
# print(face)
draw_rectangle(frame, rect)
global pass_name
if previous_label!=label_text:
os.system('cls')
previous_label = label_text
print(label_text)
if label_text==pass_name and pass_name!='':
sys.exit()
draw_text(frame, label_text, rect[0], rect[1] - 5)
cv2.imshow('Smile :) with different moods', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
#cv2.imwrite("sample.jpg",test)
break

cap.release()
cv2.destroyAllWindows()

if __name__ == '__main__':
if len(sys.argv)>1:
if str(sys.argv[1]) == '-train':
newUser()
elif str(sys.argv[1]) == '-run':
pass_name=''
createLables()
os.system('cls')
trainDataLBPH()
os.system('cls')
newUserTest()
else:
pass_name = sys.argv[1]
createLables()
os.system('cls')
trainDataLBPH()
os.system('cls')
newUserTest()
else:
createLables()
os.system('cls')
trainDataLBPH()
os.system('cls')
newUserTest()

newUser()
createLables()
os.system('cls')
trainDataLBPH()
os.system('cls')
newUserTest()

Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
'''
detectMultiScale(image, scaleFactor, minNeighbors):
This is a general function to detect objects, in this case, it'll detect faces since we called in the face cascade.
If it finds a face, it returns a list of positions of said face in the form “Rect(x,y,w,h).”, if not, then returns “None”.
Image:
The first input is the grayscale image. So make sure the image is in grayscale.
scaleFactor:
This function compensates a false perception in size that occurs when one face appears to be bigger than the other simply because it is closer to the camera.
minNeighbors:
This is a detection algorithm that uses a moving window to detect objects,
it does so by defining how many objects are found near the current one before it can declare the face found.
'''

import cv2

haar_face_cascade = cv2.CascadeClassifier('E://PYTHON//Windows-Folder-Unlock-Using-Face-Recognition-master//Face_Recognition_Script//haarcascade_frontalface_alt.xml')
lbp_face_cascade = cv2.CascadeClassifier('E://PYTHON//Windows-Folder-Unlock-Using-Face-Recognition-master//Face_Recognition_Script//lbpcascade_frontalface.xml')


def detect_faces(f_cascade, colored_img, scaleFactor=1.1):
img_copy = colored_img
# convert the test image to gray image as opencv face detector expects gray images
gray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
# let's detect multiscale (some i
# mages may be closer to camera than others) images
faces = f_cascade.detectMultiScale(gray, scaleFactor=scaleFactor, minNeighbors=5);
# go over list of faces and draw them as rectangles on original colored img
x=0
y=0
z=0
w = 0
if len(faces)==0:
return img_copy,"None","None"
for (x, y, w, h) in faces:
cv2.rectangle(img_copy, (x, y), (x + w, y + h), (0, 255, 0), 2)
return img_copy,img_copy[y:y+w, x:x+h], faces[0]

def staticFaceDetectHaar(img):
test1 = cv2.imread(img)
test1 = detect_faces(haar_face_cascade,test1)
cv2.imshow('finanl',test1)
cv2.waitKey(0)
cv2.destroyAllWindows()

def staticFaceDetectLbp(img):
test1 = cv2.imread(img)
test1 = detect_faces(lbp_face_cascade,test1)
cv2.imshow('finanl',test1)
cv2.waitKey(0)
cv2.destroyAllWindows()

def liveFaceDetectLbp():
cap = cv2.VideoCapture(0)
while(True):
ret, frame = cap.read()
frame = detect_faces(lbp_face_cascade,frame,1.1)
cv2.imshow("frame",frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()

def liveFaceDetectHaar():
cap = cv2.VideoCapture(0)
while(True):
ret, frame = cap.read()
frame = detect_faces(haar_face_cascade,frame,1.1)
cv2.imshow("frame",frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()


#liveFaceDetectHaar()
#liveFaceDetectLbp()
Binary file not shown.
Binary file not shown.
Loading
Loading