-
Notifications
You must be signed in to change notification settings - Fork 12
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Added notebook for how to use LRScheduler #79
Closed
Closed
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,302 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"<!-- ---\n", | ||
"title: <required-title>\n", | ||
"date: 2022-03-11\n", | ||
"downloads: true\n", | ||
"weight: 12\n", | ||
"sidebar: True\n", | ||
"summary: This example demonstrates how to use the [torch.optim.lr_scheduler](https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.LambdaLR) to adjust the learning rate of a model.\n", | ||
"tags:\n", | ||
" - lr scheduler\n", | ||
"--- -->\n", | ||
"\n", | ||
"# How to use LR-Schedulers" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"This how-to guide demonstrates how we can use LR-Schedulers to adjust the learning rate of a model." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Basic Setup" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Install Dependencies" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"%%capture\n", | ||
"! pip install pytorch-ignite" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Import Dependencies" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import torch\n", | ||
"import torch.optim as optim\n", | ||
"from torch.optim.lr_scheduler import ExponentialLR\n", | ||
"\n", | ||
"from ignite.engine import Engine, Events\n", | ||
"from ignite.handlers import create_lr_scheduler_with_warmup" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Create a `Dummy Trainer`" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def train_step(e, b):\n", | ||
" print(trainer.state.epoch, trainer.state.iteration, \" | \", optimizer.param_groups[0][\"lr\"])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"trainer = Engine(train_step)\n", | ||
"optimizer = optim.SGD([torch.tensor([0.1])], lr=0.1234)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Initiate a `LRScheduler`" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"torch_lr_scheduler = ExponentialLR(optimizer=optimizer, gamma=0.5)\n", | ||
"\n", | ||
"data = [0] * 8\n", | ||
"epoch_length = len(data)\n", | ||
"warmup_duration = 5\n", | ||
"scheduler = create_lr_scheduler_with_warmup(torch_lr_scheduler,\n", | ||
" warmup_start_value=0.0,\n", | ||
" warmup_duration=warmup_duration)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Trigger LR-Scheduler:\n", | ||
"\n", | ||
" - Step 1: Trigger scheduler on interation_started events before reaching warm-up.\n", | ||
" - Step 2: Trigger scheduler on epoch_started events after the warm-up. \n", | ||
"\n", | ||
"Note: Epochs are 1-based, thus we do 1 + warmup_duration / epoch_length \n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<ignite.engine.events.RemovableEventHandle at 0x7fb7a979bfa0>" | ||
] | ||
}, | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"combined_events = Events.ITERATION_STARTED(event_filter=lambda _, __: trainer.state.iteration <= warmup_duration)\n", | ||
"combined_events |= Events.EPOCH_STARTED(event_filter=lambda _, __: trainer.state.epoch > 1 + warmup_duration / epoch_length)\n", | ||
"trainer.add_event_handler(combined_events, scheduler)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Execute Trainer" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"1 1 | 0.0\n", | ||
"1 2 | 0.03085\n", | ||
"1 3 | 0.0617\n", | ||
"1 4 | 0.09255\n", | ||
"1 5 | 0.1234\n", | ||
"1 6 | 0.1234\n", | ||
"1 7 | 0.1234\n", | ||
"1 8 | 0.1234\n", | ||
"2 9 | 0.0617\n", | ||
"2 10 | 0.0617\n", | ||
"2 11 | 0.0617\n", | ||
"2 12 | 0.0617\n", | ||
"2 13 | 0.0617\n", | ||
"2 14 | 0.0617\n", | ||
"2 15 | 0.0617\n", | ||
"2 16 | 0.0617\n", | ||
"3 17 | 0.03085\n", | ||
"3 18 | 0.03085\n", | ||
"3 19 | 0.03085\n", | ||
"3 20 | 0.03085\n", | ||
"3 21 | 0.03085\n", | ||
"3 22 | 0.03085\n", | ||
"3 23 | 0.03085\n", | ||
"3 24 | 0.03085\n", | ||
"4 25 | 0.015425\n", | ||
"4 26 | 0.015425\n", | ||
"4 27 | 0.015425\n", | ||
"4 28 | 0.015425\n", | ||
"4 29 | 0.015425\n", | ||
"4 30 | 0.015425\n", | ||
"4 31 | 0.015425\n", | ||
"4 32 | 0.015425\n", | ||
"5 33 | 0.0077125\n", | ||
"5 34 | 0.0077125\n", | ||
"5 35 | 0.0077125\n", | ||
"5 36 | 0.0077125\n", | ||
"5 37 | 0.0077125\n", | ||
"5 38 | 0.0077125\n", | ||
"5 39 | 0.0077125\n", | ||
"5 40 | 0.0077125\n", | ||
"6 41 | 0.00385625\n", | ||
"6 42 | 0.00385625\n", | ||
"6 43 | 0.00385625\n", | ||
"6 44 | 0.00385625\n", | ||
"6 45 | 0.00385625\n", | ||
"6 46 | 0.00385625\n", | ||
"6 47 | 0.00385625\n", | ||
"6 48 | 0.00385625\n", | ||
"7 49 | 0.001928125\n", | ||
"7 50 | 0.001928125\n", | ||
"7 51 | 0.001928125\n", | ||
"7 52 | 0.001928125\n", | ||
"7 53 | 0.001928125\n", | ||
"7 54 | 0.001928125\n", | ||
"7 55 | 0.001928125\n", | ||
"7 56 | 0.001928125\n", | ||
"8 57 | 0.0009640625\n", | ||
"8 58 | 0.0009640625\n", | ||
"8 59 | 0.0009640625\n", | ||
"8 60 | 0.0009640625\n", | ||
"8 61 | 0.0009640625\n", | ||
"8 62 | 0.0009640625\n", | ||
"8 63 | 0.0009640625\n", | ||
"8 64 | 0.0009640625\n", | ||
"9 65 | 0.00048203125\n", | ||
"9 66 | 0.00048203125\n", | ||
"9 67 | 0.00048203125\n", | ||
"9 68 | 0.00048203125\n", | ||
"9 69 | 0.00048203125\n", | ||
"9 70 | 0.00048203125\n", | ||
"9 71 | 0.00048203125\n", | ||
"9 72 | 0.00048203125\n", | ||
"10 73 | 0.000241015625\n", | ||
"10 74 | 0.000241015625\n", | ||
"10 75 | 0.000241015625\n", | ||
"10 76 | 0.000241015625\n", | ||
"10 77 | 0.000241015625\n", | ||
"10 78 | 0.000241015625\n", | ||
"10 79 | 0.000241015625\n", | ||
"10 80 | 0.000241015625\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"State:\n", | ||
"\titeration: 80\n", | ||
"\tepoch: 10\n", | ||
"\tepoch_length: 8\n", | ||
"\tmax_epochs: 10\n", | ||
"\toutput: <class 'NoneType'>\n", | ||
"\tbatch: 0\n", | ||
"\tmetrics: <class 'dict'>\n", | ||
"\tdataloader: <class 'list'>\n", | ||
"\tseed: <class 'NoneType'>\n", | ||
"\ttimes: <class 'dict'>" | ||
] | ||
}, | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"trainer.run(data, max_epochs=10)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"accelerator": "GPU", | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@divyanshugit please add more context and links on ignite docs for the functionalities used in the NB.