Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Examples for structured outputs and tool use #172

Merged
merged 6 commits into from
Dec 5, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 83 additions & 0 deletions examples/structured_outputs/structured-outputs-image.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
import ollama from 'ollama';

import { z } from 'zod';
import { zodToJsonSchema } from 'zod-to-json-schema';
import { readFileSync } from 'fs';
import { resolve } from 'path';
import { createInterface } from 'readline';

/*
Ollama vision capabilities with structured outputs
It takes an image file as input and returns a structured JSON description of the image contents
including detected objects, scene analysis, colors, and any text found in the image
*/

// Define the schema for image objects
ParthSareen marked this conversation as resolved.
Show resolved Hide resolved
const ObjectSchema = z.object({
name: z.string().describe('The name of the object'),
confidence: z.number().min(0).max(1).describe('The confidence score of the object detection'),
attributes: z.record(z.any()).optional().describe('Additional attributes of the object')
});

// Schema for individual objects detected in the image
const ImageDescriptionSchema = z.object({
summary: z.string().describe('A concise summary of the image'),
objects: z.array(ObjectSchema).describe('An array of objects detected in the image'),
scene: z.string().describe('The scene of the image'),
colors: z.array(z.string()).describe('An array of colors detected in the image'),
time_of_day: z.enum(['Morning', 'Afternoon', 'Evening', 'Night']).describe('The time of day the image was taken'),
setting: z.enum(['Indoor', 'Outdoor', 'Unknown']).describe('The setting of the image'),
text_content: z.string().describe('Any text detected in the image')
});

async function run(model: string) {
// Create readline interface for user input
const rl = createInterface({
input: process.stdin,
output: process.stdout
});

// Get path from user input
const path = await new Promise<string>(resolve => {
rl.question('Enter the path to your image: ', resolve);
});
rl.close();

// Verify the file exists and read it
try {
const imagePath = resolve(path);
const imageBuffer = readFileSync(imagePath);
const base64Image = imageBuffer.toString('base64');

// Convert the Zod schema to JSON Schema format
const jsonSchema = zodToJsonSchema(ImageDescriptionSchema);

const messages = [{
role: 'user',
content: 'Analyze this image and return a detailed JSON description including objects, scene, colors and any text detected. If you cannot determine certain details, leave those fields empty.',
images: [base64Image]
}];

const response = await ollama.chat({
model: model,
messages: messages,
format: jsonSchema,
options: {
temperature: 0 // Make responses more deterministic
}
});

// Parse and validate the response
try {
const imageAnalysis = ImageDescriptionSchema.parse(JSON.parse(response.message.content));
console.log('Image Analysis:', imageAnalysis);
} catch (error) {
console.error("Generated invalid response:", error);
}

} catch (error) {
console.error("Error reading image file:", error);
}
}

run('llama3.2-vision').catch(console.error);
70 changes: 70 additions & 0 deletions examples/structured_outputs/structured-outputs.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
import ollama from 'ollama';
import { z } from 'zod';
ParthSareen marked this conversation as resolved.
Show resolved Hide resolved
import { zodToJsonSchema } from 'zod-to-json-schema';

/*
Ollama structured outputs capabilities
It parses the response from the model into a structured JSON object using Zod
*/

// Define the schema for friend info
const FriendInfoSchema = z.object({
name: z.string().describe('The name of the friend'),
age: z.number().int().describe('The age of the friend'),
is_available: z.boolean().describe('Whether the friend is available')
});

// Define the schema for friend list
const FriendListSchema = z.object({
friends: z.array(FriendInfoSchema).describe('An array of friends')
});

async function run(model: string) {
// Convert the Zod schema to JSON Schema format
const jsonSchema = zodToJsonSchema(FriendListSchema);

/* Can use manually defined schema directly
const schema = {
'type': 'object',
'properties': {
'friends': {
'type': 'array',
'items': {
'type': 'object',
'properties': {
'name': { 'type': 'string' },
'age': { 'type': 'integer' },
'is_available': { 'type': 'boolean' }
},
'required': ['name', 'age', 'is_available']
}
}
},
'required': ['friends']
}
*/

const messages = [{
role: 'user',
content: 'I have two friends. The first is Ollama 22 years old busy saving the world, and the second is Alonso 23 years old and wants to hang out. Return a list of friends in JSON format'
}];

const response = await ollama.chat({
model: model,
messages: messages,
format: jsonSchema, // or format: schema
options: {
temperature: 0 // Make responses more deterministic
}
});

// Parse and validate the response
try {
const friendsResponse = FriendListSchema.parse(JSON.parse(response.message.content));
console.log(friendsResponse);
} catch (error) {
console.error("Generated invalid response:", error);
}
}

run('llama3.1:8b').catch(console.error);
97 changes: 97 additions & 0 deletions examples/tools/calculator.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
import { Ollama } from '../../src/index.js';

const ollama = new Ollama();
ParthSareen marked this conversation as resolved.
Show resolved Hide resolved

// Add two numbers function
function addTwoNumbers(args: { a: number, b: number }): number {
return args.a + args.b;
}

// Subtract two numbers function
function subtractTwoNumbers(args: { a: number, b: number }): number {
return args.a - args.b;
}

// Tool definition for add function
const addTwoNumbersTool = {
type: 'function',
function: {
name: 'addTwoNumbers',
description: 'Add two numbers together',
parameters: {
type: 'object',
required: ['a', 'b'],
properties: {
a: { type: 'number', description: 'The first number' },
b: { type: 'number', description: 'The second number' }
}
}
}
};

// Tool definition for subtract function
const subtractTwoNumbersTool = {
type: 'function',
function: {
name: 'subtractTwoNumbers',
description: 'Subtract two numbers',
parameters: {
type: 'object',
required: ['a', 'b'],
properties: {
a: { type: 'number', description: 'The first number' },
b: { type: 'number', description: 'The second number' }
}
}
}
};

async function run(model: string) {
const messages = [{ role: 'user', content: 'What is three minus one?' }];
console.log('Prompt:', messages[0].content);

const availableFunctions = {
addTwoNumbers: addTwoNumbers,
subtractTwoNumbers: subtractTwoNumbers
};

const response = await ollama.chat({
model: model,
messages: messages,
tools: [addTwoNumbersTool, subtractTwoNumbersTool]
});

let output: number;
if (response.message.tool_calls) {
// Process tool calls from the response
for (const tool of response.message.tool_calls) {
const functionToCall = availableFunctions[tool.function.name];
if (functionToCall) {
console.log('Calling function:', tool.function.name);
console.log('Arguments:', tool.function.arguments);
output = functionToCall(tool.function.arguments);
console.log('Function output:', output);

// Add the function response to messages for the model to use
messages.push(response.message);
messages.push({
role: 'tool',
content: output.toString(),
});
} else {
console.log('Function', tool.function.name, 'not found');
}
}

// Get final response from model with function outputs
const finalResponse = await ollama.chat({
model: model,
messages: messages
});
console.log('Final response:', finalResponse.message.content);
} else {
console.log('No tool calls returned from model');
}
}

run('llama3.1:8b').catch(error => console.error("An error occurred:", error));
2 changes: 2 additions & 0 deletions examples/tools/tools.ts → examples/tools/flight-tracker.ts
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import ollama from 'ollama';


ParthSareen marked this conversation as resolved.
Show resolved Hide resolved
// Simulates an API call to get flight times
// In a real application, this would fetch data from a live database or API
function getFlightTimes(args: { [key: string]: any }) {
Expand Down Expand Up @@ -70,6 +71,7 @@ async function run(model: string) {
for (const tool of response.message.tool_calls) {
const functionToCall = availableFunctions[tool.function.name];
const functionResponse = functionToCall(tool.function.arguments);
console.log('functionResponse', functionResponse)
// Add function response to the conversation
messages.push({
role: 'tool',
Expand Down
Loading