-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
392 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
# This file is part of meas_algorithms. | ||
# | ||
# Developed for the LSST Data Management System. | ||
# This product includes software developed by the LSST Project | ||
# (https://www.lsst.org). | ||
# See the COPYRIGHT file at the top-level directory of this distribution | ||
# for details of code ownership. | ||
# | ||
# This program is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# This program is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU General Public License | ||
# along with this program. If not, see <https://www.gnu.org/licenses/>. | ||
|
||
|
||
from lsst.meas.algorithms.treecorrUtils import TreecorrConfig | ||
from lsst.pipe.base import Task | ||
import lsst.pipe.base as pipeBase | ||
import treecorr | ||
import copy | ||
import numpy.typing as npt | ||
|
||
|
||
__all__ = "ComputeExPsfTask" | ||
|
||
|
||
class ComputeExPsfTask(Task): | ||
"""Compute Ex for PSF. | ||
Compute scalar correlation function from | ||
PSF ellipticity residuals to compute TEx | ||
metrics. | ||
Parameters | ||
---------- | ||
de1: `np.ndarray` | ||
PSF ellipticity residuals component 1. | ||
de2: `np.ndarray` | ||
PSF ellipticity residuals component 2. | ||
ra: `np.ndarray` | ||
Right ascension coordinate. | ||
dec: `np.ndarray` | ||
Declination coordinate. | ||
units: `str` | ||
In which units are ra and dec. units supported | ||
are the same as the one in treecorr. | ||
Returns | ||
------- | ||
struct : `lsst.pipe.base.Struct` | ||
The struct contains the following data: | ||
``E1``: `float` | ||
<de1 de1> scalar correlation function, compute | ||
in an angular bin define in TreecorrConfig. | ||
``E2``: `float` | ||
<de2 de2> scalar correlation function, compute | ||
in an angular bin define in TreecorrConfig. | ||
``Ex``: `float` | ||
<de1 de2> scalar cross-correlation function, compute | ||
in an angular bin define in TreecorrConfig. | ||
""" | ||
|
||
ConfigClass = TreecorrConfig | ||
_DefaultName = "computeExPsf" | ||
|
||
def run( | ||
self, | ||
de1: npt.NDArray, | ||
de2: npt.NDArray, | ||
ra: npt.NDArray, | ||
dec: npt.NDArray, | ||
units: str = "arcmin", | ||
) -> pipeBase.Struct: | ||
|
||
kwargs_cat = { | ||
"ra": ra, | ||
"dec": dec, | ||
"ra_units": units, | ||
"dec_units": units, | ||
} | ||
|
||
cat1 = treecorr.Catalog(k=de1, **kwargs_cat) | ||
cat2 = treecorr.Catalog(k=de2, **kwargs_cat) | ||
|
||
config_kk = self.config.toDict() | ||
|
||
kk = treecorr.KKCorrelation(config_kk) | ||
|
||
kk.process(cat1) | ||
kk_E1 = copy.deepcopy(kk.xi[0]) | ||
kk.process(cat2) | ||
kk_E2 = copy.deepcopy(kk.xi[0]) | ||
kk.process(cat1, cat2) | ||
kk_Ex = copy.deepcopy(kk.xi[0]) | ||
|
||
return pipeBase.Struct(E1=kk_E1, E2=kk_E2, Ex=kk_Ex) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,289 @@ | ||
# This file is part of meas_algorithms. | ||
# | ||
# Developed for the LSST Data Management System. | ||
# This product includes software developed by the LSST Project | ||
# (https://www.lsst.org). | ||
# See the COPYRIGHT file at the top-level directory of this distribution | ||
# for details of code ownership. | ||
# | ||
# This program is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# This program is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU General Public License | ||
# along with this program. If not, see <https://www.gnu.org/licenses/>. | ||
|
||
|
||
import unittest | ||
from typing import Optional | ||
import numpy.typing as npt | ||
|
||
import numpy as np | ||
|
||
import lsst.utils.tests | ||
from lsst.meas.algorithms import GaussianProcessTreegp | ||
from lsst.meas.algorithms.computeExPsf import ComputeExPsfTask | ||
import lsst.pipe.base as pipeBase | ||
|
||
|
||
def rbf_kernel( | ||
x1: npt.NDArray, x2: npt.NDArray, sigma: float, correlation_length: float | ||
) -> npt.NDArray: | ||
""" | ||
Computes the radial basis function (RBF) kernel matrix. | ||
Parameters: | ||
----------- | ||
x1 : `np.array` | ||
Location of training data point with shape (n_samples, n_features). | ||
x2 : `np.array` | ||
Location of training/test data point with shape (n_samples, n_features). | ||
sigma : `float` | ||
The scale parameter of the kernel. | ||
correlation_length : `float` | ||
The correlation length parameter of the kernel. | ||
Returns: | ||
-------- | ||
kernel : `np.ndarray` | ||
RBF kernel matrix with shape (n_samples, n_samples). | ||
""" | ||
distance_squared = np.sum((x1[:, None, :] - x2[None, :, :]) ** 2, axis=-1) | ||
kernel = (sigma**2) * np.exp(-0.5 * distance_squared / (correlation_length**2)) | ||
return kernel | ||
|
||
|
||
def generate_gaussian_random_field( | ||
xmin: int = 0, | ||
xmax: int = 2000, | ||
ymin: int = 0, | ||
ymax: int = 2000, | ||
npoints: int = 10000, | ||
nmax: int = 1000, | ||
std: float = 1.0, | ||
correlation_length: float = 10.0, | ||
white_noise: float = 1.0, | ||
seed: int = 42, | ||
input_coord: Optional[npt.NDArray] = None, | ||
) -> pipeBase.Struct: | ||
"""Generate a Gaussian Random Field. | ||
Function to generate a Gaussian Random Field. | ||
Help for unit test and generate spatial correlated | ||
function and have an analytical 2-point correlation | ||
to compared with (Gaussian here). | ||
Parameters | ||
---------- | ||
xmin: `int` | ||
Min value in x direction. | ||
Default: ``0`` | ||
xmax: `int` | ||
Max value in x direction. | ||
Default: ``2000`` | ||
ymin: `int` | ||
Min value in y direction. | ||
Default: ``0`` | ||
ymax: `int` | ||
Max value in y direction. | ||
Default: ``2000`` | ||
npoints: `int` | ||
Number of data points generated. | ||
Default: ``10000`` | ||
nmax: `int` | ||
Max number of data points generated using | ||
`np.random.multivariate_normal`. If | ||
npoints>nmax, a GP will be used in addition. | ||
Default: ``1000`` | ||
std: `float` | ||
Amplitude of the gaussian random field. | ||
Default: ``1.0`` | ||
correlation_length: `float` | ||
Correlation length of the gaussian random field. | ||
Default: ``10.0`` | ||
white_noise: `float` | ||
Noise added to the gaussian random field. | ||
Default: ``1.0`` | ||
seed: `int` | ||
Seed of the random generator. | ||
Default: ``42`` | ||
input_coord: `np.ndarray` | ||
Take a input coord to generate the Gaussian Random field | ||
Default: ``None`` | ||
Returns | ||
------- | ||
struct : `lsst.pipe.base.Struct` | ||
The struct contains the following data: | ||
``coord``: `np.ndarray` | ||
2D coordinate of the gaussian random field | ||
``z``: `np.ndarray` | ||
Scalar value of the gaussian random field | ||
""" | ||
np.random.seed(seed) | ||
|
||
if input_coord is not None: | ||
npoints = len(input_coord[:, 0]) | ||
|
||
if npoints > nmax: | ||
ngenerated = nmax | ||
else: | ||
ngenerated = npoints | ||
|
||
if input_coord is None or npoints > nmax: | ||
x1 = np.random.uniform(xmin, xmax, ngenerated) | ||
x2 = np.random.uniform(ymin, ymax, ngenerated) | ||
coord1 = np.array([x1, x2]).T | ||
else: | ||
coord1 = input_coord | ||
kernel = rbf_kernel(coord1, coord1, std, correlation_length) | ||
kernel += np.eye(ngenerated) * white_noise**2 | ||
|
||
z1 = np.random.multivariate_normal(np.zeros(ngenerated), kernel) | ||
|
||
# Data augmentation. Create a gaussian random field | ||
# with npoints>nmax is to slow. So generate nmax points | ||
# and then interpolate it with a GP to do data augmentation. | ||
|
||
if npoints > nmax: | ||
if input_coord is None: | ||
x1 = np.random.uniform(xmin, xmax, npoints) | ||
x2 = np.random.uniform(ymin, ymax, npoints) | ||
coord = np.array([x1, x2]).T | ||
else: | ||
coord = input_coord | ||
|
||
tgp = GaussianProcessTreegp( | ||
std=std, | ||
correlation_length=correlation_length, | ||
white_noise=white_noise, | ||
mean=0.0, | ||
) | ||
tgp.fit(coord1, z1) | ||
z = tgp.predict(coord) | ||
else: | ||
coord = coord1 | ||
z = z1 | ||
|
||
return pipeBase.Struct(coord=coord, z=z) | ||
|
||
|
||
class ComputeExPsfTestCase(lsst.utils.tests.TestCase): | ||
"""Test ComputeExPsfTask.""" | ||
|
||
def setUp(self) -> None: | ||
super().setUp() | ||
|
||
output1 = generate_gaussian_random_field( | ||
xmin=0, | ||
xmax=2000, | ||
ymin=0, | ||
ymax=2000, | ||
npoints=10000, | ||
nmax=2000, | ||
std=1.0, | ||
correlation_length=200.0, | ||
white_noise=0.01, | ||
seed=42, | ||
input_coord=None, | ||
) | ||
|
||
output2 = generate_gaussian_random_field( | ||
xmin=0, | ||
xmax=2000, | ||
ymin=0, | ||
ymax=2000, | ||
npoints=10000, | ||
nmax=2000, | ||
std=1.0, | ||
correlation_length=100.0, | ||
white_noise=0.01, | ||
seed=44, | ||
input_coord=output1.coord, | ||
) | ||
|
||
self.coord1 = output1.coord | ||
self.coord2 = output2.coord | ||
self.de1 = output1.z | ||
self.de2 = output2.z | ||
|
||
def test_comp_ex_psf(self) -> None: | ||
"""Test that ex metric are compute and make sense.""" | ||
|
||
np.testing.assert_equal(self.coord1, self.coord2) | ||
|
||
ra = self.coord1[:, 0] | ||
dec = self.coord1[:, 1] | ||
|
||
config = ComputeExPsfTask.ConfigClass() | ||
|
||
config.min_sep = 0.01 | ||
config.max_sep = 5.0 | ||
config.nbins = 1 | ||
config.bin_type = "Linear" | ||
config.sep_units = "arcmin" | ||
|
||
task = ComputeExPsfTask(config) | ||
output1 = task.run(self.de1, self.de2, ra, dec, units="arcmin") | ||
|
||
# At small scale, expect the scalar two-point correlation function | ||
# to be close to the input variance for de1 and de2. Cross correlation | ||
# between de1 and de2 should be zeros are they are 2 indendant field. | ||
|
||
np.testing.assert_allclose(output1.E1, 1.0, atol=2e-1) | ||
np.testing.assert_allclose(output1.E2, 1.0, atol=2e-1) | ||
np.testing.assert_allclose(output1.Ex, 0.0, atol=1e-1) | ||
|
||
config = ComputeExPsfTask.ConfigClass() | ||
|
||
config.min_sep = 5.0 | ||
config.max_sep = 600.0 | ||
config.nbins = 1 | ||
config.bin_type = "Linear" | ||
config.sep_units = "arcmin" | ||
|
||
# At intermediar scale, expect E1>E2>Ex. | ||
|
||
task = ComputeExPsfTask(config) | ||
output2 = task.run(self.de1, self.de2, ra, dec, units="arcmin") | ||
|
||
np.testing.assert_allclose(output2.E1, 0.20, atol=1e-1) | ||
np.testing.assert_allclose(output2.E2, 0.05, atol=1e-1) | ||
np.testing.assert_allclose(output2.Ex, 0.0, atol=1e-1) | ||
|
||
config = ComputeExPsfTask.ConfigClass() | ||
|
||
config.min_sep = 600.0 | ||
config.max_sep = 1000.0 | ||
config.nbins = 1 | ||
config.bin_type = "Linear" | ||
config.sep_units = "arcmin" | ||
|
||
# At large scale, expect the scalar two-point correlation function to | ||
# be all close to 0. | ||
|
||
task = ComputeExPsfTask(config) | ||
output2 = task.run(self.de1, self.de2, ra, dec, units="arcmin") | ||
|
||
np.testing.assert_allclose(output2.E1, 0.0, atol=1e-1) | ||
np.testing.assert_allclose(output2.E2, 0.0, atol=1e-1) | ||
np.testing.assert_allclose(output2.Ex, 0.0, atol=1e-1) | ||
|
||
|
||
def setup_module(module): | ||
lsst.utils.tests.init() | ||
|
||
|
||
class MemoryTestCase(lsst.utils.tests.MemoryTestCase): | ||
pass | ||
|
||
|
||
if __name__ == "__main__": | ||
lsst.utils.tests.init() | ||
unittest.main() |