Skip to content

第23回PRMUアルゴリズムコンテスト用レポジトリ

Notifications You must be signed in to change notification settings

katsura-jp/alcon23

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

第23回 アルゴリズムコンテスト

テーマ:三文字の崩し文字認識

概要

手順

  1. データ詳細テーブルと変換器を生成する。
$ cd src
$ python creat_vocab.py # make vocabrary
$ python creat_table_multiprocess.py # make meta files
$ cd ../
  1. 学習/推論をする。
$ cd experiment
$ vim ../param/expN.yaml # change params
$ python expN.py
  1. アンサンブル

  2. 提出(test_prediction.csvにする必要あり)

$ zip yoursubmission.zip test_prediction.csv
updating: test_prediction.csv (deflated 79%)
$ unzip -l yoursubmission.zip
Archive:  yoursubmission.zip
  Length      Date    Time    Name
---------  ---------- -----   ----
   357417  03-22-2019 10:17   test_prediction.csv
---------                     -------
   357417                     1 file

Result

Public Result

exp Public score
7 94.7000%
8
9
10
11

Local Result


exp No. Local CV fold0 Public model resolution comment
0 87.391% test example. only fold0.
1 (2019-06-13_10-46-46) 87.301% ResNet18 1 MultiStepLR,momentumSGD
2
3
4.1 (2019-06-20_01-08-53) 90.695% ResNet50+LSTM(bi-directional) 2 MultiStepLR, momentumSGD,CutOut 120x120
4.2 (2019-06-23_01-57-06) 92.302% ResNet50+LSTM(bi-directional) 2 MultiStepLR, momentumSGD,CutOut height//2 x width//2
6 (2019-06-24_04-20-17) 85.695% ResNet50+bi-LSTM+ABN 2 MultiStepLR, momentumSGD,CutOut height//2 x width//2
4.3 (2019-06-25_17-50-21) 92.556% ResNet50+bi-GRU 2 MultiStepLR, momentumSGD,CutOut height//2 x width//2
4.4 (2019-06-27_00-17-53) 88.765% ResNetResLSTM_MLP 2 MultiStepLR, momentumSGD,CutOut height//2 x width//2
4.5 (2019-06-28_02-06-42) 92.943% ResNetGRU2 2 MultiStepLR, momentumSGD,CutOut height//2 x width//2. 学習不十分かもしれない
4.6 (2019-06-30_07-33-17) 92.710% ResNetGRU3 2 Grad clip(1.0)
4.7 (2019-07-01_15-10-22) 94.062% OctResNetGRU2 6
7.1 (2019-07-07_06-58-19) 98.267% OctResNetGRU2 6 SSE(5epoch/cycle) CEL

EXP-7


Detail

  • Model : OctConv ResNet50 + BiGRU x 2
  • Batch Size: 16 (about 6000 iter / epoch)
  • Resolution: 6 (192 x 128 <--- 210 x 150)
  • FP32
  • SGDR(5epoch / cycle)
  • 3~7cycle (5cycle) で SnapShot Ensemble
  • total epoch: 35

Result

fold Local CV file
0 98.255402% /mnt/hdd1/alcon2019/exp7/2019-07-13_12-25-44/fold0/
1 98.342150% /mnt/hdd1/alcon2019/exp7/2019-07-13_12-25-44/fold1/
2 98.308331% /mnt/hdd1/alcon2019/exp7/2019-07-18_10-17-48/fold2/
3 98.041016% /mnt/hdd1/alcon2019/exp7/2019-07-22_13-55-51/fold3/
4 98.206913% /mnt/hdd1/alcon2019/exp7/2019-07-22_13-55-51/fold4/
  • Public score: 94.7000%

EXP-8


Detail

  • Model : DenseNet201(pre-train ImageNet) + BiGRU x 2
  • Batch Size : 40 (about 2000 iter / epoch)
  • Resolution : 6 (192 x 128 <--- 210 x 150)
  • Mixed-Precision Training (optim level '01')
  • SGDR(5epoch / cycle)
  • 3~10cycle (8cycle) で SnapShot Ensemble
  • Total epoch: 50

Result

fold Local CV(single best) file
0 97.868174%(98.73813%) /mnt/hdd1/alcon2019/exp8/2019-07-31_01-30-12/fold0/
1 /mnt/hdd1/alcon2019/exp8/2019-08-01_04-55-40/fold1/
2 /mnt/hdd1/alcon2019/exp8/2019-08-01_04-55-40/fold2/
3 /mnt/hdd1/alcon2019/exp8/2019-08-01_04-55-40/fold3/
4 /mnt/hdd1/alcon2019/exp8/2019-08-01_04-55-40/fold4/
  • Public score:

EXP-9


Detail

  • Model : Inception-v4(pre-train ImageNet) + BiGRU x 2
  • Batch Size : 180 (530~540 iter / epoch)
  • Resolution : 6 (192 x 128 <--- 210 x 150)
  • Mixed-Precision Training (optim level '01')
  • SGDR(5epoch / cycle)
  • 3~10cycle (8cycle) で SnapShot Ensemble
  • Total epoch: 50

Result

fold Local CV(single best) file
0 97.072905%(98.701%) /mnt/hdd1/alcon2019/exp9/2019-08-01_01-41-16/fold0/
1 98.188031%(98.789%) /mnt/hdd1/alcon2019/exp9/2019-08-01_11-03-24/fold1/
2 98.083335%(98.830%) /mnt/hdd1/alcon2019/exp9/2019-08-01_23-42-41/fold2/
3
4
  • Public score:

EXP-11


Detail

  • Model : SEResNeXt-101(pre-train ImageNet) + BiGRU x 2
  • Batch Size : 64 (1500 iter / epoch)
  • Resolution : 6 (192 x 128 <--- 210 x 150)
  • Mixed-Precision Training (optim level '01')
  • SGDR(5epoch / cycle)
  • 3~10cycle (8cycle) で SnapShot Ensemble
  • Total epoch: 50
  • 遅い

Result

fold Local CV file
0
1
2
3
4
  • Public score:

メモ

  • resnet18,batch 128で16m / epoch
  • se_resnext101+LSTM(unidirect)でK80(VRAM 11GB) 2枚だと(336x224)でbatch 16/GPUでOOM。4~ hour/epoch
  • 30epochあれば十分かもしれない
  • SSE: 10epoch(SGDR) + 5epoch * 4shot = 30epoch
  • HorizonFlipでも行けるかもしれない(反転しても同じものは存在しないため)
  • Attention Branch Networkを試して見たい(Wide ResNet, SENet, ResNeXtあたり) => 精度悪化
  • SSE有効(5epoch/cycleだと足りないかも.でも5epochでもいいかも(?))
  • SENet効かない
  • 独自モデルも欲しいよね()

最終的なパイプライン

  1. Resolution 6で学習
  2. Exp-7, 8, 9, 10(OctResNet-50+DenseNet-201+Inception-v4+SE-ResNeXt-101)でのアンサンブル
  3. 時間があれば、Pseudo-Labeling

スケジュール

日付 やること
2019/08/01 ~ 2019/08/05 Exp-8
2019/08/06 ~ 2019/08/10 Exp-9
2019/08/11 ~ 2019/08/15 Exp-10
2019/08/16 ~ 2019/08/17 Pseudo-Label 作成
2019/08/18 ~ 2019/08/23 Exp-7(Pseudo-Labeling Training)
2019/08/24 ~ 2019/08/30 Exp-8(Pseudo-Labeling Training)
2019/08/31 最終日

memo

Pseudo-Labelingの方が訓練データが大きので学習に時間がかかる。

時間が足りないのでクラウド使う。

学習時のテクニック

  • Dropout
  • mixup
  • optimizer: adam or sgd
  • SGDR

アイデア

  • backbone encoder + LSTM(or GRU)
  • margin augmentation
  • Resolution Ensemble

TODO

  • PreActOctResNet
  • ShakeDrop

Model(original)

  • 001: Encoder-Decoder ResNet(test model)
  • 002: SE_ResNeXt101+LSTM
  • 003: ResNet50+LSTM
  • 004: ResNet50+Residual LSTM
  • 005: ResNet50+Residual LSTM+MLP
  • 006: ResNet50+GRU
  • 007: ResNet50+LSTM+Attention Branch Network
  • 008: ResNet50+GRUx2
  • 009: ResNet50+GRUx3
  • 010: OctConv ResNet50 + BiGRUx2
  • 011: SEResNeXt101 + BiGRUx2
  • 012: OctResNet152 + BiGRUx2
  • 013: OctConv PreAct ResNet50(Miss Implementation) + BiGRUx2
  • 014: DenseNet201 + BiGRUx2
  • 015: Inception-v4 + BiGRUx2

Model(backbone use)

  • ResNet-18,34,50,101,152(5~7 day/model)
  • ResNeXt-50,101 (2week/model)
  • SENet (3week/model)
  • DenseNet-101,201
  • WideResNet
  • Inception-v4
  • NasNet large

Model(backbone memo)

  • ResNet
  • PreAct ResNet
  • ResNeXt
  • WideResNet
  • NasNet large
  • SENet(SE-ResNet, SE-ResNeXt)
  • DenseNet
  • FishNet
  • DarkNet
  • Inception-v2,3,4 (+Inception-ResNet)
  • EfficientNet
  • pnasnet
  • xception
  • PolyNet
  • OctConv
  • PyramidNet
  • DenseNet-BC

Technique

  • Shake-Shake
  • Shake-Drop
  • Stochastic Depth
  • pruning
  • distillation
  • Negative Sampling
  • AutoAugmentation
  • ArcFace
  • CosFace
  • Pseudo-Label
  • Dropout(p=0.3, 0.4, 0.5)
  • Mixup(beta=0.2, 0.5)
  • RICAP(beta=0.3)
  • ICAP(beta=0.5)

Scheduler

  • Cosine Annearing
  • WarmUp
  • Step

Optimizer

  • momentum SGD
  • Nestrov momentum SGD
  • Adam
  • RMSProp
  • Adabound

Loss Function

  • Cross Entropy Loss
  • Binary Cross Entropy Loss
  • Focal Loss
  • Focal Travesky Loss
  • Lovasz Loss

Ensemble

  • Stacking(mean+vote, NN, GNN, CNN)
  • SnapShot Ensemble
  • Fast Geometric Ensembling
  • Stochastic Weight Averaging

Activation

  • ReLU
  • ELU
  • GELU
  • Swish
  • Erase ReLU

Kind of mean

  • 算術平均
  • 加重平均
  • 調和平均
  • 幾何平均

Image Resolution

  1. 336 x 224 <--- 384 x 256
  2. 168 x 112 <--- 192 x 128
  3. 128 x 128 <--- 150 x 150
  4. 84 x 56 <--- 96 x 64
  5. 64 x 64 <--- 72 x 72
  6. 192 x 128 <--- 210 x 150

About

第23回PRMUアルゴリズムコンテスト用レポジトリ

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages