-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfinetuning.py
74 lines (56 loc) · 2.62 KB
/
finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from tqdm import tqdm
import torch
import torch.nn as nn
from utils import accuracy
def train_batch(model, criterion, optimizer, train_loader, scheduler=None, clip=0.25, device=None, lr_decrease=2):
train_loss = 0
train_acc = 0
model.train()
model.reset_hidden()
with tqdm(total=len(train_loader)) as t:
for batch in train_loader:
x, y = batch
inputs = x.permute(1, 0).to(device)
targets = y.to(device)
# Adjust discriminative learning rates
for i in range(len(optimizer.param_groups)):
optimizer.param_groups[i]['lr'] /= lr_decrease ** i
out = model(inputs)
loss = criterion(out, targets)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), clip)
optimizer.step()
t.set_postfix({'lr{}'.format(i): optimizer.param_groups[i]['lr'] for i in range(len(optimizer.param_groups))})
if scheduler is not None: scheduler.step()
train_loss += loss.item()
train_acc += accuracy(out, targets)
t.update()
train_loss /= len(train_loader)
train_acc /= len(train_loader)
return train_loss, train_acc
def eval_batch(model, criterion, val_loader, device=None):
val_loss = 0
val_acc = 0
model.eval()
model.reset_hidden()
for batch in tqdm(val_loader):
with torch.no_grad():
x, y = batch
inputs = x.permute(1, 0).to(device)
targets = y.to(device)
out = model(inputs)
loss = criterion(out, targets)
val_loss += loss.item()
val_acc += accuracy(out, targets)
val_loss /= len(val_loader)
val_acc /= len(val_loader)
return val_loss, val_acc
def one_cycle(model, criterion, optimizer, train_loader, val_loader, scheduler=None, clip=1.0, device=None, lr_decrease=2.6, stlr_warmup=0.13, lr=1e-2):
if scheduler is None:
up = int(len(train_loader) * stlr_warmup)
down = len(train_loader) - up
scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=0, max_lr=lr, cycle_momentum=False, step_size_up=up, step_size_down=down)
train_loss, train_acc = train_batch(model, criterion, optimizer, train_loader, scheduler=scheduler, clip=clip, device=device, lr_decrease=lr_decrease)
val_loss, val_acc = eval_batch(model, criterion, val_loader, device=device)
print("Train Loss: {:.4f} | Train Acc: {:.4f} | Val Loss: {:.4f} | Val Acc: {:.4f}".format(train_loss, train_acc, val_loss, val_acc))