-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdropout.py
70 lines (61 loc) · 2.64 KB
/
dropout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import warnings
# Credits to the contributors at fast.ai
def dropout_mask(x, sz, p):
return x.new(*sz).bernoulli_(1-p).div_(1-p)
class RNNDropout(nn.Module):
def __init__(self, p=0.5):
super().__init__()
self.p=p
def forward(self, x):
if not self.training or self.p == 0.:
return x
m = dropout_mask(x.data, (x.size(0), 1, x.size(2)), self.p)
return x * m
class EmbeddingDropout(nn.Module):
def __init__(self, emb, embed_p):
super(EmbeddingDropout, self).__init__()
self.emb = emb
self.embed_p = embed_p
self.pad_idx = self.emb.padding_idx
if self.pad_idx is None: self.pad_idx = -1
def forward(self, words, scale=None):
if self.training and self.embed_p != 0:
size = (self.emb.weight.size(0),1)
mask = dropout_mask(self.emb.weight.data, size, self.embed_p)
masked_embed = (self.emb.weight * mask)
else:
masked_embed = (self.emb.weight)
if scale:
masked_embed.mul_(scale)
out = F.embedding(words, masked_embed, self.pad_idx, self.emb.max_norm,
self.emb.norm_type, self.emb.scale_grad_by_freq, self.emb.sparse)
return out
class WeightDropout(nn.Module):
def __init__(self, module, weight_p, layer_names=['weight_hh_l0']):
super(WeightDropout, self).__init__()
self.module,self.weight_p,self.layer_names = module,weight_p,layer_names
for layer in self.layer_names:
#Makes a copy of the weights of the selected layers.
w = getattr(self.module, layer)
self.register_parameter(f'{layer}_raw', nn.Parameter(w.data))
self.module._parameters[layer] = F.dropout(w, p=self.weight_p, training=False)
def _setweights(self):
"Apply dropout to the raw weights."
for layer in self.layer_names:
raw_w = getattr(self, f'{layer}_raw')
self.module._parameters[layer] = F.dropout(raw_w, p=self.weight_p, training=self.training)
def forward(self, *args):
self._setweights()
with warnings.catch_warnings():
#To avoid the warning that comes because the weights aren't flattened.
warnings.simplefilter("ignore")
return self.module.forward(*args)
def reset(self):
for layer in self.layer_names:
raw_w = getattr(self, f'{layer}_raw')
self.module._parameters[layer] = F.dropout(raw_w, p=self.weight_p, training=False)
if hasattr(self.module, 'reset'): self.module.reset()