Skip to content

Commit

Permalink
support chat generator as input of TextGenerationPipeline (#35551)
Browse files Browse the repository at this point in the history
* support chat generator as input of TextGenerationPipeline

* missing import

* fix tests

* again

* simpler

* add test
  • Loading branch information
lhoestq authored Jan 8, 2025
1 parent ebdd1ad commit 3fde88b
Show file tree
Hide file tree
Showing 2 changed files with 66 additions and 9 deletions.
31 changes: 22 additions & 9 deletions src/transformers/pipelines/text_generation.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
import enum
import itertools
import types
import warnings
from typing import Dict

Expand Down Expand Up @@ -260,16 +262,27 @@ def __call__(self, text_inputs, **kwargs):
ids of the generated text.
"""
if isinstance(
text_inputs, (list, tuple, KeyDataset) if is_torch_available() else (list, tuple)
) and isinstance(text_inputs[0], (list, tuple, dict)):
# We have one or more prompts in list-of-dicts format, so this is chat mode
if isinstance(text_inputs[0], dict):
return super().__call__(Chat(text_inputs), **kwargs)
text_inputs,
(list, tuple, types.GeneratorType, KeyDataset)
if is_torch_available()
else (list, tuple, types.GeneratorType),
):
if isinstance(text_inputs, types.GeneratorType):
text_inputs, _ = itertools.tee(text_inputs)
text_inputs, first_item = (x for x in text_inputs), next(_)
else:
chats = [Chat(chat) for chat in text_inputs] # 🐈 🐈 🐈
return super().__call__(chats, **kwargs)
else:
return super().__call__(text_inputs, **kwargs)
first_item = text_inputs[0]
if isinstance(first_item, (list, tuple, dict)):
# We have one or more prompts in list-of-dicts format, so this is chat mode
if isinstance(first_item, dict):
return super().__call__(Chat(text_inputs), **kwargs)
else:
chats = (Chat(chat) for chat in text_inputs) # 🐈 🐈 🐈
if isinstance(text_inputs, types.GeneratorType):
return super().__call__(chats, **kwargs)
else:
return super().__call__(list(chats), **kwargs)
return super().__call__(text_inputs, **kwargs)

def preprocess(
self,
Expand Down
44 changes: 44 additions & 0 deletions tests/pipelines/test_pipelines_text_generation.py
Original file line number Diff line number Diff line change
Expand Up @@ -292,6 +292,50 @@ def __getitem__(self, i):
],
)

@require_torch
def test_small_chat_model_with_iterator_pt(self):
from transformers.pipelines.pt_utils import PipelineIterator

text_generator = pipeline(
task="text-generation", model="hf-internal-testing/tiny-gpt2-with-chatml-template", framework="pt"
)

# Using `do_sample=False` to force deterministic output
chat1 = [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a test"},
]
chat2 = [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a second test"},
]
expected_chat1 = chat1 + [
{
"role": "assistant",
"content": " factors factors factors factors factors factors factors factors factors factors",
}
]
expected_chat2 = chat2 + [
{
"role": "assistant",
"content": " stairs stairs stairs stairs stairs stairs stairs stairs stairs stairs",
}
]

def data():
yield from [chat1, chat2]

outputs = text_generator(data(), do_sample=False, max_new_tokens=10)
assert isinstance(outputs, PipelineIterator)
outputs = list(outputs)
self.assertEqual(
outputs,
[
[{"generated_text": expected_chat1}],
[{"generated_text": expected_chat2}],
],
)

@require_tf
def test_small_model_tf(self):
text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf")
Expand Down

0 comments on commit 3fde88b

Please sign in to comment.