- Home
- Ansible
- Git
- GCP
- Docker
- Azure
- Terraform
- Helm
- ElasticSearch
- Kubernetes
- Istio
- OIDC
- PostgreSQL
- Terraform
# Cloud Shell is a VM with gcloud sdk
# install gcloud sdk
sudo apt-get install google-cloud-sdk
gcloud compute project-info describe --project $(gcloud config get-value core/project)
# list components e.g.: gsutil, kubectl
gcloud components list
# grant/revoke authorization to Cloud SDK
gcloud auth login
gcloud auth revoke
List/Set gcp project
gcloud projects create <PROJECT_ID> --organization=<ORGANIZATION_ID>
gcloud config list project
gcloud config set project <my-project>
Get project ID
# export project id as environment variable
export PROJECT_ID=$(gcloud config get-value core/project)
export PROJECT_ID=$(gcloud info --format='value(config.project)')
export PROOJECT_ID=$(gcloud config list --format 'value(core.project)')
Get/Set compute zone/region
Region vs Zone:
gcloud config get-value compute/region
gcloud config get-value compute/zone
gcloud config set compute/region us-east1
gcloud config set compute/zone us-east1-d
Enable APIs
# enable texttospeech API
gcloud services enable texttospeech.googleapis.com
Create storage bucket
# storage bucket: basic containers that hold your data
gsutil mb -p <PROJECT_ID> gs://<BUCKET_NAME>
Copy from/to Bucket
gsutil cp -r gs://<BUCKET_NAME> .
gsutil cp <FILE> gs://<BUCKET_NAME>
gsutil -m cp -r gs://spls/gsp233/* .
Create repo
# create source repo <REPO_NAME> @ https://source.developers.google.com/p/$PROJECT/r/s<REPO_NAME>
gcloud source repos create <REPO_NAME>
# initialize a repo
git init
git remote add origin [your-repository]
git pull [your-repository]
Clone repo
# clone repo
gcloud source repos clone <REPO_NAME> --project=<PROJECT_ID>
list all VM instances in a project
#by default instances from all zones are listed
gcloud compute instances list
create VM
# create compute instances Linux (Debian,Ubuntu, Suse, Red Hat, CoreOS) and Windows Server, on Google infrastructure
gcloud compute instances create <VN_NAME> --machine-type <MACHINE_TYPE> --zone <ZONE>
gcloud compute instances create gcelab2 --machine-type n1-standard-2 --zone us-central1-c
# create VM with tags
gcloud compute instances create lamp-1-vm --machine-type n1-standard-2 --zone=us-central1-a --tags="Allow HTTP traffic"
create VM with startup script
gcloud compute instances create www1 \
--image-family debian-9 \
--image-project debian-cloud \
--zone us-central1-a \
--tags network-lb-tag \
--metadata startup-script="#! /bin/bash
sudo apt-get update
sudo apt-get install apache2 -y
sudo service apache2 restart
echo '<!doctype html><html><body><h1>www1</h1></body></html>' | tee /var/www/html/index.html"
ssh into VM
gcloud compute ssh <VM_NAME> --zone <ZONE>
Create Virtual Private Cloud (VPC) network and subnetworks
# Create VPC griffin-dev-vpc with 2 subnets griffin-dev-wp and griffin-dev-mgmt
gcloud compute networks create griffin-dev-vpc --subnet-mode=custom
gcloud compute networks subnets create griffin-dev-wp --network=griffin-dev-vpc --range=192.168.16.0/20
gcloud compute networks subnets create griffin-dev-mgmt --network=griffin-dev-vpc --range=192.168.32.0/20
Create a bastion host (jump server) and configure NIC to subnet
gcloud compute instances create bastion-vm --machine-type=n1-standard-1 --subnet=griffin-dev-mgmt
Create k8s cluster
## K8s environment consists of multiple machines (Compute Engine instances) grouped to form a container cluster
gcloud container clusters create [CLUSTER-NAME]
# example of cluster with 2 worker nodes
gcloud container clusters create hello-world \
--num-nodes 2 \
--machine-type n1-standard-1 \
--zone us-central1-a
List k8s clusters
gcloud container clusters list
Fetch cluster auth data for kubeconfig
gcloud container clusters get-credentials [CLUSTER-NAME]
Create deployment object IMPERATIVE for deploying stateless applications
kubectl create deployment <DEPLOYMENT_NAME> --image=gcr.io/<PROJECT_ID</<IMAGE_NAME:TAG>
kubectl create deployment hello-server --image=gcr.io/google-samples/hello-app:1.0
Create service
# provide public IP and in order to access nodes from external
kubectl expose deployment hello-node --type="LoadBalancer" --port=8080
Create deployment and service DECLARATIVE
# based on
kubectl create -f deployment.yaml
kubectl create -f service.yaml
Create k8s namespace
# NAMESPACE = objects which partition a single K8s cluster into multiple virtual clusters
kubectl create ns <NAMESPACE>
# get namespace
kubectl config view | grep namespace
Delete deployment
gcloud deployment-manager deployments delete <DEPLOYMENT_NAME> --delete-policy=DELETE
Restart deployment
kubectl rollout restart deployment/<DEPLOYMENT_NAME>
# interactive rollout
kubectl edit deployments/<DEPLOYMENT_NAME>
Scale deployment (replicasets)
# from 1 to 3
kubectl scale --current-replicas=1 --replicas=3 deployment/<DEPLOYMENT_NAME>
Get replicasets/nodes/pods/services/deployments
kubectl cluster-info
kubectl get pods
kubectl get svc
kubectl get replicasets
kubectl get rs
kubectl get deployments
export SERVICE_PORT=$(kubectl get --namespace <NAMESPACE> -o jsonpath="{.spec.ports[0].port}" services <SERVICE>)
export SERVICE_IP=$(kubectl get svc --namespace <NAMESPACE> <SERVICE> -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
# App Engine standard environment is based on container instances (preconfigured with one of several available runtimes Java 7/8, Python 2.7, Go and PHP)) running on Google's infrastructure.
# App Engine is a serverless compute platform that is fully managed to scale up and down as workloads demand
Deploy golang app to AppEngine
# install component
gcloud components install app-engine-go
# deploy app's code and configuration to the App Engine server
gcloud app deploy
# app.yml to define the runtime: go115
gcloud app deploy app.yaml --project $PROJECT_ID -q
# open the current app in a web browser
gcloud app browse
# app.yaml content
runtime: go113
handlers:
- url: /.*
secure: always
script: auto
env_variables:
PORT: "8080"
# event-driven serverless compute platform
index.js as cloud function
/**
* Background Cloud Function to be triggered by Pub/Sub.
* This function is exported by index.js, and executed when
* the trigger topic receives a message.
*
* @param {object} data The event payload.
* @param {object} context The event metadata.
*/
exports.helloWorld = (data, context) => {
const pubSubMessage = data;
const name = pubSubMessage.data
? Buffer.from(pubSubMessage.data, 'base64').toString() : "Hello World";
console.log(`My Cloud Function: ${name}`);
};
Create storage bucket and deploy function to bucket
gsutil mb -p <PROJECT_ID> gs://<BUCKET_NAME>
gcloud functions deploy helloWorld \
--stage-bucket <BUCKET_NAME> \
--trigger-topic hello_world \
--runtime nodejs8
#verify function status
gcloud functions describe helloWorld
# test function/ check logs
DATA=$(printf 'Hello World!'|base64) && gcloud functions call helloWorld --data '{"data":"'$DATA'"}'
gcloud functions logs read helloWorld
___ _____
/\ (_) \
/ \ (_,
_) _\ _ \
/ (_)\_( )____\
\_ / _ _/
) /\/ _ (o)(
\ \_) (o) /
\/________/ @dejanualex