Skip to content

Commit

Permalink
Merge pull request #495 from YWolfeee/api
Browse files Browse the repository at this point in the history
API modification: support combined dipole training mode and global dipole test mode.
  • Loading branch information
amcadmus authored Apr 12, 2021
2 parents 1a06aa4 + c459183 commit 4a10349
Show file tree
Hide file tree
Showing 4 changed files with 138 additions and 24 deletions.
4 changes: 2 additions & 2 deletions deepmd/entrypoints/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -232,10 +232,10 @@ def parse_args(args: Optional[List[str]] = None):
)
parser_tst.add_argument(
"-a",
"--atomic-energy",
"--atomic",
action="store_true",
default=False,
help="Test the accuracy of atomic energy",
help="Test the accuracy of atomic label, i.e. energy / dipole / polar",
)

# * compress model *****************************************************************
Expand Down
23 changes: 18 additions & 5 deletions deepmd/entrypoints/test.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ def test(
rand_seed: Optional[int],
shuffle_test: bool,
detail_file: str,
atomic_energy: bool,
atomic: bool,
**kwargs,
):
"""Test model predictions.
Expand All @@ -47,7 +47,7 @@ def test(
whether to shuffle tests
detail_file : Optional[str]
file where test details will be output
atomic_energy : bool
atomic : bool
whether per atom quantities should be computed
Raises
Expand Down Expand Up @@ -83,11 +83,11 @@ def test(
system,
numb_test,
detail_file,
atomic_energy,
atomic,
append_detail=(cc != 0),
)
elif dp.model_type == "dipole":
err, siz = test_dipole(dp, data, numb_test, detail_file)
err, siz = test_dipole(dp, data, numb_test, detail_file, atomic)
elif dp.model_type == "polar":
err, siz = test_polar(dp, data, numb_test, detail_file, global_polar=False)
elif dp.model_type == "global_polar":
Expand Down Expand Up @@ -550,6 +550,7 @@ def test_dipole(
data: DeepmdData,
numb_test: int,
detail_file: Optional[str],
has_atom_dipole: bool,
) -> Tuple[List[np.ndarray], List[int]]:
"""Test energy type model.
Expand All @@ -563,19 +564,31 @@ def test_dipole(
munber of tests to do
detail_file : Optional[str]
file where test details will be output
has_atom_dipole : bool
whether atomic dipole is provided
Returns
-------
Tuple[List[np.ndarray], List[int]]
arrays with results and their shapes
"""
data.add(
"dipole", 3, atomic=True, must=True, high_prec=False, type_sel=dp.get_sel_type()
"dipole", 3, atomic=has_atom_dipole, must=True, high_prec=False, type_sel=dp.get_sel_type()
)
test_data = data.get_test()
dipole, numb_test, _ = run_test(dp, test_data, numb_test)

# do summation in atom dimension
if has_atom_dipole == False:
dipole = np.reshape(dipole,(dipole.shape[0], -1, 3))
atoms = dipole.shape[1]
dipole = np.sum(dipole,axis=1)

l2f = l2err(dipole - test_data["dipole"][:numb_test])

if has_atom_dipole == False:
l2f = l2f / atoms

log.info(f"# number of test data : {numb_test:d}")
log.info(f"Dipole RMSE : {l2f:e} eV/A")

Expand Down
133 changes: 117 additions & 16 deletions deepmd/loss/tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,24 +12,62 @@ class TensorLoss () :
def __init__ (self, jdata, **kwarg) :
try:
model = kwarg['model']
type_sel = model.get_sel_type()
self.type_sel = model.get_sel_type()
except :
type_sel = None
self.type_sel = None
self.tensor_name = kwarg['tensor_name']
self.tensor_size = kwarg['tensor_size']
self.label_name = kwarg['label_name']
self.atomic = kwarg.get('atomic', True)
self.atomic = kwarg.get('atomic', None)
if jdata is not None:
self.scale = jdata.get('scale', 1.0)
else:
self.scale = 1.0

# YHT: added for global / local dipole combination
if self.atomic is True: # upper regulation, will control the lower behavior
self.local_weight,self.global_weight = 1.0,0.0
elif self.atomic is False: # upper regulation, will control the lower behavior
self.local_weight,self.global_weight = 0.0,1.0
else: # self.atomic is None, let the loss parameter decide which mode to use
if jdata is not None:
self.local_weight = jdata.get('pref_atomic_' + self.tensor_name,None)
self.global_weight = jdata.get('pref_' + self.tensor_name,None)

# get the input parameter first
if self.local_weight is None and self.global_weight is None:
# default: downward compatibility, using local mode
self.local_weight , self.global_weight = 1.0, 0.0
self.atomic = True
elif self.local_weight is None and self.global_weight is not None:
# using global mode only, normalize to 1
assert self.global_weight > 0.0, AssertionError('assign a zero weight to global dipole without setting a local weight')
self.local_weight = 0.0
self.atomic = False
elif self.local_weight is not None and self.global_weight is None:
assert self.local_weight > 0.0, AssertionError('assign a zero weight to local dipole without setting a global weight')
self.global_weight = 0.0
self.atomic = True
else: # Both are not None
self.atomic = True if self.local_weight != 0.0 else False
assert (self.local_weight >0.0) or (self.global_weight>0.0), AssertionError('can not assian zero weight to both local and global mode')

# normalize, not do according to Han Wang's suggestion
#temp_sum = self.local_weight + self.global_weight
#self.local_weight /= temp_sum
#self.global_weight /= temp_sum

else: # Nothing been set, use default setting
self.local_weight,self.global_weight = 1.0,0.0
self.atomic = True

# data required
add_data_requirement(self.label_name,
self.tensor_size,
atomic=self.atomic,
must=True,
high_prec=False,
type_sel = type_sel)
type_sel = self.type_sel)

def build (self,
learning_rate,
Expand All @@ -39,22 +77,67 @@ def build (self,
suffix):
polar_hat = label_dict[self.label_name]
polar = model_dict[self.tensor_name]
l2_loss = tf.reduce_mean( tf.square(self.scale*(polar - polar_hat)), name='l2_'+suffix)
more_loss = {'nonorm': l2_loss}
if not self.atomic :
atom_norm = 1./ global_cvt_2_tf_float(natoms[0])
l2_loss = l2_loss * atom_norm

# YHT: added for global / local dipole combination
l2_loss = global_cvt_2_tf_float(0.0)
more_loss = {
"local_loss":global_cvt_2_tf_float(0.0),
"global_loss":global_cvt_2_tf_float(0.0)
}


if self.local_weight > 0.0:
local_loss = tf.reduce_mean( tf.square(self.scale*(polar - polar_hat)), name='l2_'+suffix)
more_loss['local_loss'] = local_loss
l2_loss += self.local_weight * local_loss
self.l2_loss_local_summary = tf.summary.scalar('l2_local_loss',
tf.sqrt(more_loss['local_loss']))


if self.global_weight > 0.0: # Need global loss
atoms = 0
if self.type_sel is not None:
for w in self.type_sel:
atoms += natoms[2+w]
else:
atoms = natoms[0]
nframes = tf.shape(polar)[0] // self.tensor_size // atoms
# get global results
global_polar = tf.reshape(tf.reduce_sum(tf.reshape(
polar, [nframes, -1, self.tensor_size]), axis=1),[-1])
if self.atomic: # If label is local, however
global_polar_hat = tf.reshape(tf.reduce_sum(tf.reshape(
polar_hat, [nframes, -1, self.tensor_size]), axis=1),[-1])
else:
global_polar_hat = polar_hat

global_loss = tf.reduce_mean( tf.square(self.scale*(global_polar - global_polar_hat)), name='l2_'+suffix)

more_loss['global_loss'] = global_loss
self.l2_loss_global_summary = tf.summary.scalar('l2_global_loss',
tf.sqrt(more_loss['global_loss']) / global_cvt_2_tf_float(atoms))

# YHT: should only consider atoms with dipole, i.e. atoms
# atom_norm = 1./ global_cvt_2_tf_float(natoms[0])
atom_norm = 1./ global_cvt_2_tf_float(atoms)
global_loss *= atom_norm

l2_loss += self.global_weight * global_loss

self.l2_more = more_loss
self.l2_l = l2_loss
self.l2_more = more_loss['nonorm']

self.l2_loss_summary = tf.summary.scalar('l2_loss', tf.sqrt(l2_loss))
return l2_loss, more_loss

@staticmethod
def print_header():
def print_header(self):
prop_fmt = ' %11s %11s'
print_str = ''
print_str += prop_fmt % ('rmse_tst', 'rmse_trn')
if self.local_weight > 0.0:
print_str += prop_fmt % ('rmse_lc_tst', 'rmse_lc_trn')
if self.global_weight > 0.0:
print_str += prop_fmt % ('rmse_gl_tst', 'rmse_gl_trn')
return print_str

def print_on_training(self,
Expand All @@ -65,15 +148,29 @@ def print_on_training(self,
feed_dict_test,
feed_dict_batch) :

run_data = [self.l2_l]
# YHT: added to calculate the atoms number
atoms = 0
if self.type_sel is not None:
for w in self.type_sel:
atoms += natoms[2+w]
else:
atoms = natoms[0]

run_data = [self.l2_l, self.l2_more['local_loss'], self.l2_more['global_loss']]
summary_list = [self.l2_loss_summary]
if self.local_weight > 0.0:
summary_list.append(self.l2_loss_local_summary)
if self.global_weight > 0.0:
summary_list.append(self.l2_loss_global_summary)

# first train data
error_train = sess.run(run_data, feed_dict=feed_dict_batch)

# than test data, if tensorboard log writter is present, commpute summary
# and write tensorboard logs
if tb_writer:
summary_merged_op = tf.summary.merge([self.l2_loss_summary])
#summary_merged_op = tf.summary.merge([self.l2_loss_summary])
summary_merged_op = tf.summary.merge(summary_list)
run_data.insert(0, summary_merged_op)

test_out = sess.run(run_data, feed_dict=feed_dict_test)
Expand All @@ -82,10 +179,14 @@ def print_on_training(self,
summary = test_out.pop(0)
tb_writer.add_summary(summary, cur_batch)

error_test = test_out[0]
error_test = test_out

print_str = ""
prop_fmt = " %11.2e %11.2e"
print_str += prop_fmt % (np.sqrt(error_test), np.sqrt(error_train))
print_str += prop_fmt % (np.sqrt(error_test[0]), np.sqrt(error_train[0]))
if self.local_weight > 0.0:
print_str += prop_fmt % (np.sqrt(error_test[1]), np.sqrt(error_train[1]) )
if self.global_weight > 0.0:
print_str += prop_fmt % (np.sqrt(error_test[2])/atoms, np.sqrt(error_train[2])/atoms)

return print_str
2 changes: 1 addition & 1 deletion source/tests/test_argument_parser.py
Original file line number Diff line number Diff line change
Expand Up @@ -262,7 +262,7 @@ def test_parser_test(self):
"--numb-test": dict(type=int, value=1),
"--rand-seed": dict(type=(int, type(None)), value=12321),
"--detail-file": dict(type=(str, type(None)), value="TARGET.FILE"),
"--atomic-energy": dict(type=bool),
"--atomic": dict(type=bool),
}

self.run_test(command="test", mapping=ARGS)
Expand Down

0 comments on commit 4a10349

Please sign in to comment.