-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
move fasttext wrapper from cleanlab.models to examples (#92)
- Loading branch information
Showing
3 changed files
with
314 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,310 @@ | ||
# Copyright (C) 2017-2023 Cleanlab Inc. | ||
# This file is part of cleanlab. | ||
# | ||
# cleanlab is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU Affero General Public License as published | ||
# by the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# cleanlab is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU Affero General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU Affero General Public License | ||
# along with cleanlab. If not, see <https://www.gnu.org/licenses/>. | ||
|
||
""" | ||
Text classification with fastText models that are compatible with cleanlab. | ||
This module allows you to easily find label issues in your text datasets. | ||
You must have fastText installed: ``pip install "fasttext==0.9.2"`` or lower. | ||
Version 0.9.3 has a regression bug and the official package has been archived on GitHub. | ||
Tips: | ||
* Check out our example using this class: `fasttext_amazon_reviews <https://github.com/cleanlab/examples/blob/master/fasttext_amazon_reviews/fasttext_amazon_reviews.ipynb>`_ | ||
* Our `unit tests <https://github.com/cleanlab/cleanlab/blob/master/tests/test_frameworks.py>`_ also provide basic usage examples. | ||
""" | ||
|
||
import time | ||
import os | ||
import copy | ||
import numpy as np | ||
from sklearn.base import BaseEstimator | ||
from fasttext import train_supervised, load_model | ||
|
||
|
||
LABEL = "__label__" | ||
NEWLINE = " __newline__ " | ||
|
||
|
||
def data_loader( | ||
fn=None, | ||
indices=None, | ||
label=LABEL, | ||
batch_size=1000, | ||
): | ||
"""Returns a generator, yielding two lists containing | ||
[labels], [text]. Items are always returned in the | ||
order in the file, regardless if indices are provided.""" | ||
|
||
def _split_labels_and_text(batch): | ||
l, t = [list(t) for t in zip(*(z.split(" ", 1) for z in batch))] | ||
return l, t | ||
|
||
# Prepare a stack of indices | ||
if indices is not None: | ||
stack_indices = sorted(indices, reverse=True) | ||
stack_idx = stack_indices.pop() | ||
|
||
with open(fn, "r") as f: | ||
len_label = len(label) | ||
idx = 0 | ||
batch_counter = 0 | ||
prev = f.readline() | ||
batch = [] | ||
while True: | ||
try: | ||
line = f.readline() | ||
line = line | ||
if line[:len_label] == label or line == "": | ||
if indices is None or stack_idx == idx: | ||
# Write out prev line and reset prev | ||
batch.append(prev.strip().replace("\n", NEWLINE)) | ||
batch_counter += 1 | ||
|
||
if indices is not None: | ||
if len(stack_indices): | ||
stack_idx = stack_indices.pop() | ||
else: # No more data in indices, quit loading data. | ||
yield _split_labels_and_text(batch) | ||
break | ||
prev = "" | ||
idx += 1 | ||
if batch_counter == batch_size: | ||
yield _split_labels_and_text(batch) | ||
# Reset batch | ||
batch_counter = 0 | ||
batch = [] | ||
prev += line | ||
if line == "": | ||
if len(batch) > 0: | ||
yield _split_labels_and_text(batch) | ||
break | ||
except EOFError: | ||
if indices is None or stack_idx == idx: | ||
# Write out prev line and reset prev | ||
batch.append(prev.strip().replace("\n", NEWLINE)) | ||
batch_counter += 1 | ||
yield _split_labels_and_text(batch) | ||
break | ||
|
||
|
||
class FastTextClassifier(BaseEstimator): # Inherits sklearn base classifier | ||
"""Instantiate a fastText classifier that is compatible with :py:class:`CleanLearning <cleanlab.classification.CleanLearning>`. | ||
Parameters | ||
---------- | ||
train_data_fn: str | ||
File name of the training data in the format compatible with fastText. | ||
test_data_fn: str, optional | ||
File name of the test data in the format compatible with fastText. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
train_data_fn, | ||
test_data_fn=None, | ||
labels=None, | ||
tmp_dir="", | ||
label=LABEL, | ||
del_intermediate_data=True, | ||
kwargs_train_supervised={}, | ||
p_at_k=1, | ||
batch_size=1000, | ||
): | ||
self.train_data_fn = train_data_fn | ||
self.test_data_fn = test_data_fn | ||
self.tmp_dir = tmp_dir | ||
self.label = label | ||
self.del_intermediate_data = del_intermediate_data | ||
self.kwargs_train_supervised = kwargs_train_supervised | ||
self.p_at_k = p_at_k | ||
self.batch_size = batch_size | ||
self.clf = None | ||
self.labels = labels | ||
|
||
if labels is None: | ||
# Find all class labels across the train and test set (if provided) | ||
unique_labels = set([]) | ||
for labels, _ in data_loader(fn=train_data_fn, batch_size=batch_size): | ||
unique_labels = unique_labels.union(set(labels)) | ||
if test_data_fn is not None: | ||
for labels, _ in data_loader(fn=test_data_fn, batch_size=batch_size): | ||
unique_labels = unique_labels.union(set(labels)) | ||
else: | ||
# Prepend labels with self.label token (e.g. '__label__'). | ||
unique_labels = [label + str(l) for l in labels] | ||
# Create maps: label strings <-> integers when label strings are used | ||
unique_labels = sorted(list(unique_labels)) | ||
self.label2num = dict(zip(unique_labels, range(len(unique_labels)))) | ||
self.num2label = dict((y, x) for x, y in self.label2num.items()) | ||
|
||
def _create_train_data(self, data_indices): | ||
"""Returns filename of the masked fasttext data file. | ||
Items are written in the order they are in the file, | ||
regardless if indices are provided.""" | ||
|
||
# If X indexes all training data, no need to rewrite the file. | ||
if data_indices is None: | ||
self.masked_data_was_created = False | ||
return self.train_data_fn | ||
# Mask training data by data_indices | ||
else: | ||
len_label = len(LABEL) | ||
data_indices = sorted(data_indices, reverse=True) | ||
masked_fn = "fastTextClf_" + str(int(time.time())) + ".txt" | ||
open(masked_fn, "w").close() | ||
# Read in training data one line at a time | ||
with open(self.train_data_fn, "r") as rf: | ||
idx = 0 | ||
data_idx = data_indices.pop() | ||
for line in rf: | ||
# Mask by data_indices | ||
if idx == data_idx: | ||
with open(masked_fn, "a") as wf: | ||
wf.write(line.strip().replace("\n", NEWLINE) + "\n") | ||
if line[:len_label] == LABEL: | ||
if len(data_indices): | ||
data_idx = data_indices.pop() | ||
else: | ||
break | ||
# Increment data index if starts with __label__ | ||
# This enables support for text data containing '\n'. | ||
if line[:len_label] == LABEL: | ||
idx += 1 | ||
self.masked_data_was_created = True | ||
|
||
return masked_fn | ||
|
||
def _remove_masked_data(self, fn): | ||
"""Deletes intermediate data files.""" | ||
|
||
if self.del_intermediate_data and self.masked_data_was_created: | ||
os.remove(fn) | ||
|
||
def __deepcopy__(self, memo): | ||
if self.clf is None: | ||
self_clf_copy = None | ||
else: | ||
fn = "tmp_{}.fasttext.model".format(int(time.time())) | ||
self.clf.save_model(fn) | ||
self_clf_copy = load_model(fn) | ||
os.remove(fn) | ||
# Store self.clf | ||
params = self.__dict__ | ||
clf = params.pop("clf") | ||
# Copy params without self.clf (it can't be copied) | ||
params_copy = copy.deepcopy(params) | ||
# Add clf back to self.clf | ||
self.clf = clf | ||
# Create copy to return | ||
clf_copy = FastTextClassifier(self.train_data_fn) | ||
params_copy["clf"] = self_clf_copy | ||
clf_copy.__dict__ = params_copy | ||
return clf_copy | ||
|
||
def fit(self, X=None, y=None, sample_weight=None): | ||
"""Trains the fast text classifier. | ||
Typical usage requires NO parameters, | ||
just clf.fit() # No params. | ||
Parameters | ||
---------- | ||
X : iterable, e.g. list, numpy array (default None) | ||
The list of indices of the data to use. | ||
When in doubt, set as None. None defaults to range(len(data)). | ||
y : None | ||
Leave this as None. It's a filler to suit sklearns reqs. | ||
sample_weight : None | ||
Leave this as None. It's a filler to suit sklearns reqs.""" | ||
|
||
train_fn = self._create_train_data(data_indices=X) | ||
self.clf = train_supervised(train_fn, **self.kwargs_train_supervised) | ||
self._remove_masked_data(train_fn) | ||
|
||
def predict_proba(self, X=None, train_data=True, return_labels=False): | ||
"""Produces a probability matrix with examples on rows and | ||
classes on columns, where each row sums to 1 and captures the | ||
probability of the example belonging to each class.""" | ||
|
||
fn = self.train_data_fn if train_data else self.test_data_fn | ||
pred_probs_list = [] | ||
if return_labels: | ||
labels_list = [] | ||
for labels, text in data_loader(fn=fn, indices=X, batch_size=self.batch_size): | ||
pred = self.clf.predict(text=text, k=len(self.clf.get_labels())) | ||
# Get p(label = k | x) matrix of shape (N x K) of pred probs for each x | ||
pred_probs = [ | ||
[p for _, p in sorted(list(zip(*l)), key=lambda x: x[0])] for l in list(zip(*pred)) | ||
] | ||
pred_probs_list.append(np.array(pred_probs)) | ||
if return_labels: | ||
labels_list.append(labels) | ||
pred_probs = np.concatenate(pred_probs_list, axis=0) | ||
if return_labels: | ||
gold_labels = [self.label2num[z] for l in labels_list for z in l] | ||
return (pred_probs, np.array(gold_labels)) | ||
else: | ||
return pred_probs | ||
|
||
def predict(self, X=None, train_data=True, return_labels=False): | ||
"""Predict labels of X""" | ||
|
||
fn = self.train_data_fn if train_data else self.test_data_fn | ||
pred_list = [] | ||
if return_labels: | ||
labels_list = [] | ||
for labels, text in data_loader(fn=fn, indices=X, batch_size=self.batch_size): | ||
pred = [self.label2num[z[0]] for z in self.clf.predict(text)[0]] | ||
pred_list.append(pred) | ||
if return_labels: | ||
labels_list.append(labels) | ||
pred = np.array([z for l in pred_list for z in l]) | ||
if return_labels: | ||
gold_labels = [self.label2num[z] for l in labels_list for z in l] | ||
return (pred, np.array(gold_labels)) | ||
else: | ||
return pred | ||
|
||
def score(self, X=None, y=None, sample_weight=None, k=None): | ||
"""Compute the average precision @ k (single label) of the | ||
labels predicted from X and the true labels given by y. | ||
score expects a `y` variable. In this case, `y` is the noisy labels.""" | ||
|
||
# Set the k for precision@k. | ||
# For single label: 1 if label is in top k, else 0 | ||
if k is None: | ||
k = self.p_at_k | ||
|
||
fn = self.test_data_fn | ||
pred_list = [] | ||
if y is None: | ||
labels_list = [] | ||
for labels, text in data_loader(fn=fn, indices=X, batch_size=self.batch_size): | ||
pred = self.clf.predict(text, k=k)[0] | ||
pred_list.append(pred) | ||
if y is None: | ||
labels_list.append(labels) | ||
pred = np.array([z for l in pred_list for z in l]) | ||
if y is None: | ||
y = [z for l in labels_list for z in l] | ||
else: | ||
y = [self.num2label[z] for z in y] | ||
|
||
apk = np.mean([y[i] in l for i, l in enumerate(pred)]) | ||
|
||
return apk |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,4 @@ | ||
# This notebook requires cleanlab versions >= 2.3.0: pip install "cleanlab>=2.3.0" | ||
fasttext | ||
fasttext==0.9.2 | ||
numpy==1.21.6 | ||
scikit_learn==1.0.2 |