Skip to content

Latest commit

 

History

History
174 lines (141 loc) · 5.85 KB

README.md

File metadata and controls

174 lines (141 loc) · 5.85 KB

Pydian - pythonic data interchange

Pydian is a pure Python library for repeatable and sharable data mappings and transformations. Pydian reduces boilerplate and provides a framework for expressively mapping data through Python dict objects and native sequence comprehensions.

With Pydian, you can grab and manipulate data from heavily nested dicts using get:

from pydian import get

# Some arbitrary source dict
payload = {
    'some': {
        'deeply': {
            'nested': [{
                'value': 'here!'
            }]
        }
    },
    'list_of_objects': [
        {'val': 1},
        {'val': 2},
        {'val': 3}
    ]
}

# Conveniently get values and chain operations
assert get(payload, 'some.deeply.nested[0].value', apply=str.upper) == 'HERE!'

# Unwrap list structures with [*]
assert get(payload, 'list_of_objects[*].val') == [1,2,3]

# Safely specify your logic with built-in null checking (handle `None` instead of a stack trace!)
assert get(payload, 'somekey.nope.not.there', apply=str.upper) == None

For complex data mapping tasks, the Mapper framework provides additional benefits:

from pydian import DROP, Mapper, get
from typing import Any

# Same example from above
payload = {
    'some': {
        'deeply': {
            'nested': [{
                'value': 'here!'
            }]
        }
    },
    'list_of_objects': [
        {'val': 1},
        {'val': 2},
        {'val': 3}
    ]
}

# Specify your logic as data in a centralized mapping function (dict -> dict)
def mapping_fn(source: dict[str, Any]) -> dict[str, Any]:
    return {
        'res_list': [
            {
                'static_value': 'Some static data',
                'uppercase_nested_val': get(source, 'some.deeply.nested[0].value', apply=str.upper),
                'unwrapped_list': get(source, 'list_of_objects[*].val'),
                'maybe_present_value?': get(source, 'somekey.nope.not.there', apply=str.upper),
                # Use the DROP enum to set objects to `None` relative to the data element
                'maybe_present_object?': {
                    'other_static_value': 'More static data', # Without DROP, this will always be present
                    'maybe_present_value?': get(source, 'somekey.nope.not.there', apply=str.upper, drop_level=DROP.THIS_OBJECT)
                },
            }
        ]
    }

# Use the `Mapper` class to get post-processing features like null value removal and conditional dropping
mapper = Mapper(mapping_fn)

# Get an iterpretable result that syntactically matches the mapping function!
assert mapper(payload) == {
    'res_list': [
        {
            'static_value': 'Some static data',
            'uppercase_nested_val': 'HERE!',
            'unwrapped_list': [1, 2, 3],
            # Empty values like `None` are removed automatically from the result
        }
    ]
}

See the mapping test examples for a more involved look at some of the features + intended use-cases.

get Functionality

Pydian defines a special get function that provides a simple syntax for:

  • Getting nested items
    • Chain gets with .
    • Index into lists, e.g. [0], [-1]
    • Unwrap a list of dicts with [*]
    • Get multiple items from a dict at once using ("firstKey", "secondKey") syntax
  • Chaining successful operations with apply
  • Add a pre-condition with only_if
  • Specifying conditional dropping with drop_level (see below)

None handling is built-in which reduces boilerplate code!

Mapper Functionality

The Mapper framework provides a consistent way of abstracting mapping steps as well as several useful post-processing steps, including:

  1. Null value removal: Removing None, "", [], {} values from the final result
  2. Conditional dropping: Drop key(s)/object(s) if a specific value is None

Null value removal

This is just a parameter on the Mapper object (remove_empty) which defaults to True.

An "empty" value is defined in lib/util.py and includes: None, "", [], {}

Conditional dropping

This can be done during value evaluation in get which the Mapper object cleans up at runtime:

from pydian import DROP, Mapper, get

payload = {
    'some': 'value'
}

def mapping_fn(source: dict) -> dict:
    return {
        'object': {
            # This is always present, but what if we want it removed if another element is missing?
            'static_value': 'Some value',
            # Specify in `get` or as an `if` comprehension
            'maybe_present_value?': get(source, 'some_missing_key', drop_level=DROP.THIS_OBJECT),
        }
    }

# Use a Mapper to handle the DROP enum. During handling, correpsonding values are set to `None`
mapper = Mapper(mapping_fn, remove_empty=False)

assert mapper(payload) == {
    'object': None
}

pydian.partials Library

For chained operations, it's pretty common to write a bunch of lambda functions. While this works, writing these can get verbose and cumbersome (e.g. writing something like lambda x: x == 1 to check if something equals 1).

As a convenience, Pydian provides library of partial wrappers that quickly provide 1-input, 1-output functions:

from pydian import get
import pydian.partials as p

# Arbitrary example
source = {
    'some_values': [
        250,
        350,
        450
    ]
}

assert p.equals(1)(1) == True
assert p.equivalent(False)(False) == True
assert get(source, 'some_values', apply=p.index(0), only_if=p.contains(350)) == 250
assert get(source, 'some_values', apply=p.index(0), only_if=p.contains(9000)) == None
assert get(source, 'some_values', apply=p.index(1)) == 350
assert get(source, 'some_values', apply=p.keep(2)) == [250, 350]

Issues

Please submit a GitHub Issue for any bugs + feature requests and we'll take a look!