Skip to content

ZhangwenguangHikvision/YoloV5_JDE_TensorRT_for_Track

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YoloV5_JDE_TensorRT_for_Track

Introduction

A multi object detect and track Library Based on tensorrt

一个基于TensorRT的多目标检测和跟踪融合算法库,可以同时支持行人的多目标检测和跟踪,当然也可以仅仅当检测库使用。

本算法的主框架采用了JDE+deepsort结构,其中由JDE算法检测出人的坐标与其对应的外观特征,然后基于deepsort的方法进行目标与运动轨迹的匹配。 JDE中的检测框架则采用了YOLOV5 L 的模型结构。

CSTrack3_0.yaml为本网络的模型结构,模型训练的代码大部分借鉴了CSTrack原文作者的开源项目,这里不再开源,大家有兴趣可以阅读CSTrack论文。 需要注意的是,本项目由于追求速度将CStrack的CCN和SAAN模块改成了JDE模块,也就是直接在anchor上提取reid特征并没有进行detect和reid的解耦模块。 如果读者需要的话可以自行修改,这样可以提升IDswich方面的性能。

Reference

Requirements

  • ubuntu 18.04 for x86
  • gcc/g++ >= 7.5.0
  • opencv >= 3.4.8
  • cuda >=10.0 cudnn >= 7.6
  • tensorRT >= 7.0.0
  • (Optional) ffmpeg (used in the video demo)

How to build and run

  • modify track/CMakeLists.txt Change opencv and tensorRT to your local directory
  • modify demo/CMakeLists.txt Change opencv and tensorRT to your local directory
  • modify demo/src/main.cpp Change video path to your local directory
  • sh make.sh
  • cd demo/build
  • ./itest

How to convert to tensort gie file

  • cd PytorchToTensorRTGIE
  • modify CMakeLists.txt Change opencv and tensorRT to your local directory
  • download jde.wts file
  • cd build
  • cmake ..
  • make
  • ./yolov5 -s
  • #Verify detect results
  • ./yolov5 -d ../sample/

Model

  • TensorRT GIE Model File: [Baidu] key: 6yc6.

Download the model and put it to /weight/

Download the model and put it to /PytorchToTensorRTGIE/

Video Demo

Acknowledgement

A large portion of code is borrowed from wang-xinyu/tensorrtx and sephirothhua/DeepSort_yoloV3-HOG_feature and , many thanks to their wonderful work!

About

A multi object tracking Library Based on tensorrt

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published