-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add quantum neural network and scientific domains
- Loading branch information
1 parent
78e73c4
commit adec74c
Showing
8 changed files
with
592 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
import jax | ||
import jax.numpy as jnp | ||
from jax import tree_util | ||
import flax.linen as nn | ||
import pennylane as qml | ||
import logging | ||
from typing import Callable, List, Tuple, Optional, Any, Dict | ||
from functools import partial | ||
from flax import struct | ||
|
||
class QuantumNeuralNetwork(nn.Module): | ||
""" | ||
A quantum neural network module that combines classical and quantum computations. | ||
This class implements a variational quantum circuit that can be used as a layer | ||
in a hybrid quantum-classical neural network. | ||
Attributes: | ||
num_qubits (int): The number of qubits in the quantum circuit. | ||
num_layers (int): The number of layers in the variational quantum circuit. | ||
input_shape (Tuple[int, ...]): The shape of the input tensor. | ||
output_shape (Tuple[int, ...]): The shape of the output tensor (excluding batch dimension). | ||
max_retries (int): The maximum number of retries for quantum circuit execution. | ||
""" | ||
|
||
num_qubits: int | ||
num_layers: int | ||
input_shape: Tuple[int, ...] | ||
output_shape: Tuple[int, ...] | ||
max_retries: int = 3 | ||
device: Optional[qml.Device] = None | ||
qlayer: Optional[Callable] = None | ||
vmap_qlayer: Optional[Callable] = None | ||
|
||
def setup(self): | ||
logging.info(f"Setting up QuantumNeuralNetwork with {self.num_qubits} qubits, {self.num_layers} layers, input shape {self.input_shape}, and output shape {self.output_shape}") | ||
self._validate_init_params() | ||
|
||
self.param('weights', nn.initializers.uniform(scale=0.1), (self.num_layers, self.num_qubits, 3)) | ||
try: | ||
quantum_components = self._initialize_quantum_components() | ||
self.device = quantum_components['device'] | ||
self.qlayer = quantum_components['qlayer'] | ||
self.vmap_qlayer = quantum_components['vmap_qlayer'] | ||
self.variable('quantum_components', 'components', lambda: quantum_components) | ||
except Exception as e: | ||
logging.error(f"Error initializing quantum components: {str(e)}") | ||
fallback_components = self._fallback_initialization() | ||
self.device = fallback_components['device'] | ||
self.qlayer = fallback_components['qlayer'] | ||
self.vmap_qlayer = fallback_components['vmap_qlayer'] | ||
self.variable('quantum_components', 'components', lambda: fallback_components) | ||
|
||
def _validate_init_params(self): | ||
if not isinstance(self.num_qubits, int) or self.num_qubits <= 0: | ||
raise ValueError(f"Number of qubits must be a positive integer, got {self.num_qubits}") | ||
if not isinstance(self.num_layers, int) or self.num_layers <= 0: | ||
raise ValueError(f"Number of layers must be a positive integer, got {self.num_layers}") | ||
if not isinstance(self.input_shape, tuple) or len(self.input_shape) != 2 or self.input_shape[1] != self.num_qubits: | ||
raise ValueError(f"Invalid input_shape: {self.input_shape}. Expected shape (batch_size, {self.num_qubits})") | ||
if not isinstance(self.output_shape, tuple) or len(self.output_shape) != 1 or self.output_shape[0] != self.num_qubits: | ||
raise ValueError(f"Invalid output_shape: {self.output_shape}. Expected shape ({self.num_qubits},)") | ||
|
||
def _initialize_quantum_components(self): | ||
try: | ||
self.device = qml.device("default.qubit", wires=self.num_qubits) | ||
self.qlayer = qml.QNode(self.quantum_circuit, self.device, interface="jax") | ||
self.vmap_qlayer = jax.vmap(self.qlayer, in_axes=(0, None)) | ||
logging.info("Quantum components created successfully") | ||
return { | ||
'device': self.device, | ||
'qlayer': self.qlayer, | ||
'vmap_qlayer': self.vmap_qlayer | ||
} | ||
except Exception as e: | ||
logging.error(f"Error creating quantum components: {str(e)}") | ||
return self._fallback_initialization() | ||
|
||
def quantum_circuit(self, inputs: jnp.ndarray, weights: jnp.ndarray) -> List[qml.measurements.ExpectationMP]: | ||
qml.AngleEmbedding(inputs, wires=range(self.num_qubits)) | ||
for l in range(self.num_layers): | ||
qml.StronglyEntanglingLayers(weights[l], wires=range(self.num_qubits)) | ||
return [qml.expval(qml.PauliZ(i)) for i in range(self.num_qubits)] | ||
|
||
def validate_input_shape(self, x: jnp.ndarray) -> None: | ||
if len(x.shape) != 2 or x.shape[1] != self.num_qubits: | ||
raise ValueError(f"Input shape {x.shape} does not match expected shape (batch_size, {self.num_qubits})") | ||
|
||
def __call__(self, x: jnp.ndarray, deterministic: bool = False) -> jnp.ndarray: | ||
try: | ||
self.validate_input_shape(x) | ||
if jnp.any(jnp.isnan(x)) or jnp.any(jnp.isinf(x)): | ||
raise ValueError(f"Input contains NaN or Inf values: {x}") | ||
|
||
logging.debug(f"Executing quantum circuit with input shape: {x.shape}") | ||
if self.vmap_qlayer is None: | ||
logging.warning("Quantum components not initialized. Attempting initialization.") | ||
self._initialize_quantum_components() | ||
if self.vmap_qlayer is None: | ||
logging.error("Quantum components initialization failed. Using fallback.") | ||
return self._fallback_output(x) | ||
|
||
result_array = self._execute_quantum_circuit(x) | ||
|
||
expected_shape = (x.shape[0],) + self.output_shape | ||
if result_array.shape != expected_shape: | ||
logging.warning(f"Output shape mismatch. Expected {expected_shape}, got {result_array.shape}. Reshaping.") | ||
result_array = jnp.reshape(result_array, expected_shape) | ||
|
||
result_array = jnp.clip(result_array, -1, 1) | ||
logging.info(f"Quantum circuit executed successfully. Input shape: {x.shape}, Output shape: {result_array.shape}") | ||
return result_array | ||
except ValueError as ve: | ||
logging.error(f"ValueError during quantum circuit execution: {str(ve)}") | ||
return self._fallback_output(x) | ||
except Exception as e: | ||
logging.error(f"Unexpected error during quantum circuit execution: {str(e)}") | ||
return self._fallback_output(x) | ||
|
||
def _execute_quantum_circuit(self, x: jnp.ndarray) -> jnp.ndarray: | ||
weights = self.variable('params', 'weights').value | ||
for attempt in range(self.max_retries): | ||
try: | ||
logging.debug(f"Attempt {attempt + 1}/{self.max_retries} to execute quantum circuit") | ||
if self.vmap_qlayer is None: | ||
raise ValueError("Quantum components not properly initialized") | ||
result = self.vmap_qlayer(x, weights) | ||
result_array = jnp.array(result) | ||
if jnp.all(jnp.isfinite(result_array)): | ||
logging.info(f"Quantum circuit execution successful on attempt {attempt + 1}") | ||
return result_array | ||
else: | ||
raise ValueError("Quantum circuit produced non-finite values") | ||
except Exception as e: | ||
logging.warning(f"Quantum circuit execution failed on attempt {attempt + 1}: {str(e)}") | ||
if attempt == self.max_retries - 1: | ||
logging.error("Max retries reached. Quantum circuit execution failed.") | ||
return self._fallback_output(x) | ||
return self._fallback_output(x) # Ensure a return value if loop completes | ||
|
||
def _fallback_output(self, x: jnp.ndarray) -> jnp.ndarray: | ||
fallback = jnp.zeros((x.shape[0],) + self.output_shape) | ||
noise = jax.random.normal(jax.random.PRNGKey(0), fallback.shape) * 0.1 | ||
return jnp.clip(fallback + noise, -1, 1) | ||
|
||
def _fallback_initialization(self): | ||
logging.warning("Falling back to classical initialization") | ||
fallback_components = { | ||
'device': None, | ||
'qlayer': lambda x, w: jnp.zeros(self.output_shape), | ||
'vmap_qlayer': jax.vmap(lambda x, w: jnp.zeros(self.output_shape), in_axes=(0, None)) | ||
} | ||
logging.info("Classical fallback initialization completed") | ||
self.sow('quantum_components', 'components', fallback_components) | ||
return fallback_components | ||
|
||
def reinitialize_device(self): | ||
try: | ||
new_device = qml.device("default.qubit", wires=self.num_qubits) | ||
new_qlayer = qml.QNode(self.quantum_circuit, new_device, interface="jax") | ||
new_vmap_qlayer = jax.vmap(new_qlayer, in_axes=(0, None)) | ||
new_components = { | ||
'device': new_device, | ||
'qlayer': new_qlayer, | ||
'vmap_qlayer': new_vmap_qlayer | ||
} | ||
self.variable('quantum_components', 'components', lambda: new_components) | ||
logging.info("Quantum device reinitialized successfully") | ||
except Exception as e: | ||
logging.error(f"Error reinitializing quantum device: {str(e)}") | ||
fallback_components = self._fallback_initialization() | ||
self.variable('quantum_components', 'components', lambda: fallback_components) | ||
return self.variable('quantum_components', 'components').value | ||
|
||
@partial(jax.jit, static_argnums=(0, 1, 2, 3)) | ||
def create_quantum_nn(num_qubits: int, num_layers: int, input_shape: Tuple[int, ...], output_shape: Tuple[int, ...]) -> QuantumNeuralNetwork: | ||
return QuantumNeuralNetwork(num_qubits=num_qubits, num_layers=num_layers, input_shape=input_shape, output_shape=output_shape) |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
import jax.numpy as jnp | ||
|
||
class QuantumDomains: | ||
def __init__(self): | ||
# Placeholder initialization | ||
pass | ||
|
||
def simulate(self, state): | ||
# Placeholder quantum simulation | ||
return jnp.array(state) | ||
|
||
def measure(self, state): | ||
# Placeholder measurement | ||
return jnp.abs(state)**2 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
# TensorFlow specific implementations will go here | ||
|
||
import tensorflow as tf | ||
import keras | ||
|
||
# Example model using TensorFlow | ||
class TensorFlowModel(keras.Model): | ||
def __init__(self, features): | ||
super(TensorFlowModel, self).__init__() | ||
self.layers_ = keras.Sequential([ | ||
keras.layers.Dense(100, activation='relu'), | ||
keras.layers.Dense(features), | ||
]) | ||
|
||
def call(self, inputs): | ||
return self.layers_(inputs) | ||
|
||
# Training function | ||
@tf.function | ||
def train_tf_model(model, X, y, epochs=10, lr=0.001): | ||
optimizer = keras.optimizers.Adam(learning_rate=lr) | ||
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) | ||
|
||
@tf.function | ||
def train_step(x, y): | ||
with tf.GradientTape() as tape: | ||
logits = model(x, training=True) | ||
loss = loss_fn(y, logits) | ||
gradients = tape.gradient(loss, model.trainable_variables) | ||
optimizer.apply_gradients(zip(gradients, model.trainable_variables)) | ||
return loss | ||
|
||
for epoch in range(epochs): | ||
loss = train_step(X, y) | ||
if epoch % 10 == 0: | ||
print(f"Epoch {epoch}, Loss: {loss.numpy()}") | ||
|
||
return model | ||
|
||
# Decorator for distributed training | ||
def distribute(strategy): | ||
def decorator(func): | ||
def wrapper(*args, **kwargs): | ||
return strategy.run(func, args=args, kwargs=kwargs) | ||
return wrapper | ||
return decorator | ||
|
||
# Example usage of distribute decorator | ||
# @distribute(tf.distribute.MirroredStrategy()) | ||
# def distributed_train_step(model, x, y): | ||
# # Your distributed training logic here | ||
# pass |
Oops, something went wrong.