-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fix optimization process and update test cases for quantum protein de…
…velopment
- Loading branch information
1 parent
403e869
commit 4babc30
Showing
2 changed files
with
156 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
import pennylane as qml | ||
import numpy as np | ||
|
||
class QuantumProteinFolding: | ||
def __init__(self, num_qubits, num_layers): | ||
self.num_qubits = num_qubits | ||
self.num_layers = num_layers | ||
self.dev = qml.device("default.qubit", wires=num_qubits) | ||
self.params = np.random.uniform(low=-np.pi, high=np.pi, size=(num_layers, num_qubits, 3)) | ||
|
||
@qml.qnode(device=qml.device("default.qubit", wires=1)) | ||
def qubit_layer(params, input_val): | ||
qml.RX(input_val, wires=0) | ||
qml.RY(params[0], wires=0) | ||
qml.RZ(params[1], wires=0) | ||
return qml.expval(qml.PauliZ(0)) | ||
|
||
class QuantumProteinFolding: | ||
def __init__(self, num_qubits, num_layers): | ||
self.num_qubits = num_qubits | ||
self.num_layers = num_layers | ||
self.dev = qml.device("default.qubit", wires=num_qubits) | ||
self.params = qml.numpy.array(np.random.uniform(low=-np.pi, high=np.pi, size=(num_layers, num_qubits, 2)), requires_grad=True) | ||
|
||
def quantum_protein_layer(self, inputs, params): | ||
outputs = [] | ||
for i in range(0, len(inputs)): | ||
qml.RX(inputs[i], wires=0) | ||
outputs.append(qubit_layer(params=params[i % self.num_qubits], input_val=inputs[i])) | ||
return np.array(outputs) | ||
|
||
def forward(self, amino_acid_sequence): | ||
x = np.array(amino_acid_sequence) | ||
for layer in range(self.num_layers): | ||
x = self.quantum_protein_layer(x, self.params[layer]) | ||
return x | ||
|
||
def protein_folding_simulation(self, amino_acid_sequence): | ||
""" | ||
Simulate protein folding using quantum circuits. | ||
Args: | ||
amino_acid_sequence (list): A list of numbers representing amino acids. | ||
Returns: | ||
np.array: Simulated protein structure. | ||
Raises: | ||
ValueError: If the amino_acid_sequence is empty. | ||
""" | ||
if len(amino_acid_sequence) == 0: | ||
raise ValueError("The amino acid sequence cannot be empty.") | ||
return self.forward(amino_acid_sequence) | ||
|
||
def optimize_folding(self, amino_acid_sequence, num_iterations=200): | ||
""" | ||
Optimize the protein folding simulation. | ||
Args: | ||
amino_acid_sequence (list): A list of numbers representing amino acids. | ||
num_iterations (int): Number of optimization iterations. | ||
Returns: | ||
np.array: Optimized protein structure. | ||
""" | ||
opt = qml.AdamOptimizer(stepsize=0.05) | ||
|
||
def cost(params): | ||
self.params = params.reshape(self.num_layers, self.num_qubits, 2) | ||
folded_protein = self.protein_folding_simulation(amino_acid_sequence) | ||
# New cost function: minimize the sum of squares of the folded protein | ||
return qml.math.sum(folded_protein**2) | ||
|
||
initial_params = self.params.copy() | ||
params = initial_params.flatten() | ||
|
||
for i in range(num_iterations): | ||
params, cost_val = opt.step_and_cost(cost, params) | ||
|
||
self.params = params.reshape(self.num_layers, self.num_qubits, 2) | ||
optimized_result = self.protein_folding_simulation(amino_acid_sequence) | ||
initial_result = self.forward(amino_acid_sequence) | ||
|
||
if qml.math.sum(optimized_result**2) < qml.math.sum(initial_result**2): | ||
return optimized_result | ||
else: | ||
self.params = initial_params | ||
return initial_result | ||
|
||
# Example usage | ||
if __name__ == "__main__": | ||
num_qubits = 4 | ||
num_layers = 2 | ||
qpf = QuantumProteinFolding(num_qubits, num_layers) | ||
|
||
# Example amino acid sequence (simplified as numbers) | ||
amino_acid_sequence = [0.1, 0.2, 0.3, 0.4] | ||
|
||
# Simulate protein folding | ||
folded_protein = qpf.protein_folding_simulation(amino_acid_sequence) | ||
print("Simulated folded protein structure:", folded_protein) | ||
|
||
# Optimize folding | ||
optimized_protein = qpf.optimize_folding(amino_acid_sequence) | ||
print("Optimized folded protein structure:", optimized_protein) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
import unittest | ||
import numpy as np | ||
from quantum_protein_development import QuantumProteinFolding | ||
|
||
class TestQuantumProteinFolding(unittest.TestCase): | ||
def setUp(self): | ||
self.num_qubits = 4 | ||
self.num_layers = 2 | ||
self.qpf = QuantumProteinFolding(self.num_qubits, self.num_layers) | ||
|
||
def test_initialization(self): | ||
self.assertEqual(self.qpf.num_qubits, self.num_qubits) | ||
self.assertEqual(self.qpf.num_layers, self.num_layers) | ||
self.assertEqual(self.qpf.params.shape, (self.num_layers, self.num_qubits, 2)) | ||
|
||
def test_protein_folding_simulation(self): | ||
amino_acid_sequence = [0.1, 0.2, 0.3, 0.4] | ||
folded_protein = self.qpf.protein_folding_simulation(amino_acid_sequence) | ||
self.assertIsInstance(folded_protein, np.ndarray) | ||
self.assertEqual(len(folded_protein), 4) # Expected output size matches input size | ||
|
||
def test_optimize_folding(self): | ||
amino_acid_sequence = [0.1, 0.2, 0.3, 0.4] | ||
optimized_protein = self.qpf.optimize_folding(amino_acid_sequence, num_iterations=10) | ||
self.assertIsInstance(optimized_protein, np.ndarray) | ||
self.assertEqual(len(optimized_protein), 4) # Expected output size matches input size | ||
|
||
def test_empty_sequence(self): | ||
with self.assertRaises(ValueError): | ||
self.qpf.protein_folding_simulation([]) | ||
|
||
def test_large_sequence(self): | ||
large_sequence = np.random.rand(100) | ||
folded_protein = self.qpf.protein_folding_simulation(large_sequence) | ||
self.assertEqual(len(folded_protein), 100) # Expected output size matches input size | ||
|
||
def test_optimization_improvement(self): | ||
amino_acid_sequence = [0.1, 0.2, 0.3, 0.4] | ||
initial_folding = self.qpf.protein_folding_simulation(amino_acid_sequence) | ||
optimized_folding = self.qpf.optimize_folding(amino_acid_sequence, num_iterations=50) | ||
|
||
# Calculate the cost (sum of squares) for both initial and optimized folding | ||
initial_cost = np.sum(initial_folding**2) | ||
optimized_cost = np.sum(optimized_folding**2) | ||
|
||
# Check if the optimized cost is lower (better) than the initial cost | ||
self.assertLess(optimized_cost, initial_cost, | ||
f"Optimization did not improve the folding. Initial cost: {initial_cost}, Optimized cost: {optimized_cost}") | ||
|
||
if __name__ == '__main__': | ||
unittest.main() |