Skip to content

Commit

Permalink
Skinet v1.0
Browse files Browse the repository at this point in the history
  • Loading branch information
SkinetTeam authored Jun 2, 2021
0 parents commit 6bf0975
Show file tree
Hide file tree
Showing 15 changed files with 7,213 additions and 0 deletions.
23 changes: 23 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
Skinet (Segmentation of the Kidney through a Neural nETwork) Project

MIT License

Copyright (c) 2020 Skinet Team

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
23 changes: 23 additions & 0 deletions LICENSE_MATTERPORT
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
Mask R-CNN

The MIT License (MIT)

Copyright (c) 2017 Matterport, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
12 changes: 12 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# SKINET (Segmentation of the KIdney through a Neural nETwork) Project

SKINET Project is meant to perform a segmentation of a kidney's biopsy or a nephrectomy and recognize the different histological structures. By doing that, it is possible to analyze kidneys more precisely and get a better understanding of their behaviors.

The project's code is based on [Matterport's Mask R-CNN](https://github.com/matterport/Mask_RCNN) and [Navidyou's repository](https://github.com/navidyou/Mask-RCNN-implementation-for-cell-nucleus-detection-executable-on-google-colab-).

This project is a collaboration between a Nephrology team from [Dijon Burgundy Teaching Hospital](https://www.chu-dijon.fr/), [LEAD Laboratory](http://leadserv.u-bourgogne.fr/en/), and a student from [ESIREM](https://esirem.u-bourgogne.fr/), all located in Dijon, Burgundy, France.

## Inference tool
Last : [![Open Inference Tool In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SkinetTeam/Skinet/blob/main/Skinet_Inference_Tool.ipynb)

v1.0 : [![Open Inference Tool In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SkinetTeam/Skinet/blob/v1.0/Skinet_Inference_Tool.ipynb)
483 changes: 483 additions & 0 deletions Skinet_Inference_Tool.ipynb

Large diffs are not rendered by default.

141 changes: 141 additions & 0 deletions common_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
"""
Skinet (Segmentation of the Kidney through a Neural nETwork) Project
Common display/math methods
Copyright (c) 2021 Skinet Team
Licensed under the MIT License (see LICENSE for details)
Written by Adrien JAUGEY
"""
from datetime import datetime
import numpy as np


def progressBar(value, maxValue, prefix="", suffix="", forceNewLine=False, size=20, full='█', cursor='▒',
empty='░'):
"""
Prints a progress bar
Based on https://stackoverflow.com/questions/6169217/replace-console-output-in-python
:param value: the current progress value
:param maxValue: the maximum value that could be given
:param prefix: text to display before the progress bar
:param suffix: text to display after the progress bar
:param forceNewLine: False by default, if True a new line will be created even if not at the end
:param size: size of the bar itself
:param full: the character to use for the completed part of the bar
:param cursor: the character to use for the current position
:param empty: the character to use for the empty part of the bar
:return: None
"""
percent = float(value) / maxValue
nbFullChar = int(percent * size)
bar = full * nbFullChar + (cursor if percent > 0 and nbFullChar < size else "")
emptyBar = empty * (size - len(bar))
print(f'\r{prefix} {bar}{emptyBar} {percent: 6.2%} {suffix}',
end='\n' if value == maxValue or forceNewLine else "", flush=True)


def progressText(value, maxValue, onlyRaw=False, onlyPercent=False):
if onlyRaw and onlyPercent:
return None
elif onlyRaw:
return f"({value}/{maxValue})"
else:
percent = float(value) / maxValue
if onlyPercent:
return f"({percent:06.2%})"
else:
return f"({value}/{maxValue} | {percent:06.2%})"


def formatTime(seconds: int, minutes: int = 0, hours: int = 0):
"""
Returns a string representing the given time
:param seconds: number of seconds
:param minutes: if given, number of minutes adding to seconds
:param hours: if given, number of hours adding to seconds
:return: formated time as string of "hh:mm:ss" format
"""
seconds += minutes * 60 + hours * 3600
seconds = int(seconds)
h = seconds // 3600
m = (seconds % 3600) // 60
s = seconds % 60
hText = f"{h:02d}:" if h != 0 else ""
mText = f"{m:02d}:" if h + m != 0 else ""
sText = f"{s:02d}" if h + m != 0 else f"{s:02d}s"
return f"{hText}{mText}{sText}"


def formatDate(date: datetime = None, dateOnly=False, timeOnly=False):
"""
Returns date as string
:param date: datetime.datetime object to use specific date, current date and time by default
:param dateOnly: if True, will only display the date, not the time
:param timeOnly: if True, will only display the time, not the date
:return: formatted date as string
"""
if date is None:
date = datetime.now()
else:
assert type(date) is datetime, "Provide date as datetime.datetime object"
dateFormat = '%Y-%m-%d'
timeFormat = '%H-%M-%S'
if dateOnly and timeOnly:
outputFormat = ""
elif dateOnly:
outputFormat = dateFormat
elif timeOnly:
outputFormat = timeFormat
else:
outputFormat = f"{dateFormat}_{timeFormat}"
return date.strftime(outputFormat)


def format_number(num, maxLength=None):
"""
Formats a number using a metric prefix such as K (Kilo), M (Mega)... up to Y (Yotta)
:param num: the number to format
:param maxLength: maximum length of the formatted number, will reduce number of decimals from 2 to 0 depending on
the length but will at least return abs(num / 1000^N) followed by the metric prefix for 1000^N.
:return: the formatted number with up to 2 decimal digits
"""
# https://stackoverflow.com/questions/579310/formatting-long-numbers-as-strings-in-python
suffixes = ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y']
magnitude = 0
isInt = np.issubdtype(type(num), np.integer)
while abs(num) >= 1000 and magnitude < len(suffixes) - 1:
magnitude += 1
num /= 1000.0

if magnitude == 0 and isInt:
return str(int(num))

if maxLength is not None:
possibleText = [f"{num:.2f}{suffixes[magnitude]}",
f"{num:.1f}{suffixes[magnitude]}",
f"{num:.0f}{suffixes[magnitude]}"]
for text in possibleText:
if len(text) <= maxLength:
return text
return possibleText[-1]
return f"{num:.1f}{suffixes[magnitude]}"


def combination(setSize, combinationSize):
"""
Computes the number of k-combinations in a set
Source : https://python.jpvweb.com/python/mesrecettespython/doku.php?id=combinaisons
:param setSize: number of elements in the set
:param combinationSize: number of elements in a combination
:return: number of k-combinations
"""
if combinationSize > setSize // 2:
combinationSize = setSize - combinationSize
x = 1
y = 1
i = setSize - combinationSize + 1
while i <= setSize:
x = (x * i) // y
y += 1
i += 1
return x
25 changes: 25 additions & 0 deletions environment.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
name: Skinet
channels:
- defaults
dependencies:
- python=3.7
- pip:
- tensorflow-gpu==1.15.5
- tensorboard==1.15
- keras==2.3.1
- h5py==2.10.0
- jupyter
- matplotlib
- numpy==1.18.3
- opencv-python==4.2.0.34
- imgaug==0.4.0
- ipython
- jsonschema
- html5lib
- imageio==2.8.0
- imagesize==1.2.0
- pillow==7.1.1
- scikit-image==0.15.0
- scipy==1.1.0


78 changes: 78 additions & 0 deletions mrcnn/compat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
"""
Skinet (Segmentation of the Kidney through a Neural nETwork) Project
Copyright (c) 2021 Skinet Team
Licensed under the MIT License (see LICENSE for details)
Written by Adrien JAUGEY
"""
import tensorflow as tf

version = tf.__version__
TF_MAJOR, TF_MINOR, TF_PATCH = [int(v) for v in version.split('.')][:3]


def get_version():
return TF_MAJOR, TF_MINOR, TF_PATCH


############################################################
# Arguments rewrite
############################################################
def crop_and_resize_v1(image, boxes, box_indices, crop_size, method, extrapolation_value, name):
return tf.image.crop_and_resize(image, boxes, box_ind=box_indices, crop_size=crop_size, method=method,
extrapolation_value=extrapolation_value, name=name)


def crop_and_resize_v2(image, boxes, box_indices, crop_size, method, extrapolation_value, name):
return tf.image.crop_and_resize(image, boxes, box_indices=box_indices, crop_size=crop_size, method=method,
extrapolation_value=extrapolation_value, name=name)


############################################################
# Defining methods to use
############################################################
if TF_MAJOR == 1 and 3 <= TF_MINOR <= 15:
if TF_MINOR < 14:
WHERE_FUNC = tf.where
else:
WHERE_FUNC = tf.compat.v1.where_v2

if TF_MINOR < 13:
CROP_AND_RESIZE_FUNC = crop_and_resize_v1
INTERSECTION_FUNC = tf.sets.set_intersection
else: # TF >= 1.13
CROP_AND_RESIZE_FUNC = crop_and_resize_v2
INTERSECTION_FUNC = tf.sets.intersection

if TF_MINOR < 12:
TO_DENSE_FUNC = tf.sparse_tensor_to_dense
else: # TF >= 1.12
TO_DENSE_FUNC = tf.sparse.to_dense

if TF_MINOR < 10:
LOG_FUNC = tf.log
else: # TF >= 1.10
LOG_FUNC = tf.math.log
else:
raise NotImplementedError(f"Compatibility with TF {tf.__version__} is not implemented")


def crop_and_resize(image, boxes, box_indices=None, crop_size=None, method='bilinear', extrapolation_value=0,
name=None):
return CROP_AND_RESIZE_FUNC(image, boxes, box_indices, crop_size, method, extrapolation_value, name)


def intersection(a, b, validate_indices=True):
return INTERSECTION_FUNC(a=a, b=b, validate_indices=validate_indices)


def log(x, name=None):
return LOG_FUNC(x, name=name)


def to_dense(sp_input, default_value=None, validate_indices=True, name=None):
return TO_DENSE_FUNC(sp_input=sp_input, default_value=default_value, validate_indices=validate_indices, name=name)


def where(condition, x=None, y=None, name=None):
return WHERE_FUNC(condition=condition, x=x, y=y, name=name)
Loading

0 comments on commit 6bf0975

Please sign in to comment.