Skip to content

The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

License

Notifications You must be signed in to change notification settings

SUNY-Albany-CCI/Mining-the-Social-Web-3rd-Edition

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

95 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mining the Social Web, 3rd Edition

The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Amazon and Safari Books Online.

The notebooks folder of this repository contains the latest bug-fixed sample code used in the book chapters.

Quickstart

Binder

The easiest way to start playing with code right away is to use Binder. Binder is a service that takes a GitHub repository containing Jupyter Notebooks and spins up a cloud-based server to run them. You can start experimenting with the code without having to install anything on your machine. Click the badge above, or follow this link to get started right away.

NOTE: Binder will not save your files on its servers. During your next session, it will be a completely fresh instantiation of this repository. If you need a more persistent solution, consider running the code on your own machine.

Getting started on your own machine using Docker

  1. Install Docker
  2. Install repo2docker: pip install jupyter-repo2docker
  3. From the command line:
repo2docker https://github.com/mikhailklassen/Mining-the-Social-Web-3rd-Edition

This will create a Docker container from the repository directly. It takes a while to finish building the container, but once it's done, you will see a URL printed to screen. Copy and paste the URL into your browser.

A longer set of instructions can be found here.

Getting started on your own machine from source

If you are familiar with git and have a git client installed on your machine, simply clone the repository to your own machine. However, it is up to you to install all the dependencies for the repository. The necessary Python libraries are detailed in the requirements.txt file. The other requirements are detailed in the Requirements section below.

If you prefer not to use a git client, you can instead download a zip archive directly from GitHub. The only disadvantage of this approach is that in order to synchronize your copy of the code with any future bug fixes, you will need to download the entire repository again. You are still responsible for installing any dependencies yourself.

Install all the prerequisites using pip:

pip install -r requirements.txt

Once you're done, step into the notebooks directory and launch the Jupyter notebook server:

jupyter notebook

Side note on MongoDB

If you wish to complete all the examples in Chapter 9, you will need to install MongoDB. We do not provide support on how to do this. This is for more advanced users and is really only relevant to a few examples in Chapter 9.

Contributing

There are several ways in which you can contribute to the project. If you discover a bug in any of the code, the first thing to do is to create a new issue under the Issues tab of this repository. If you are a developer and would like to contribute a bug fix, please feel free to fork the repository and submit a pull request.

The code is provided "as-is" and we make no guarantees that it is bug-free. Keep in mind that we access the APIs of various social media platforms and their APIs are subject to change. Since the start of this project, various social media platforms have tightened the permissions on their platform. Getting full use out of all the code in this book may require submitting an application the social media platform of your choice for approval. Despite these restrictions, we hope that the code still provides plenty of flexibility and opportunities to go deeper.

About

The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 95.1%
  • HTML 3.9%
  • Other 1.0%