Skip to content

Ding7928/deep_learning_in_proteomics

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

60 Commits
 
 

Repository files navigation

This is a list of applications of deep learning methods in proteomics.

Wen, B., Zeng, W.-F., Liao, Y., Shi, Z., Savage, S. R., Jiang, W., Zhang, B., Deep Learning in Proteomics. Proteomics 2020, 20, 1900335.

Table of contents:

Peptide MS/MS spectrum prediction

  1. pDeep

  2. Prosit

  3. DeepMass

  4. Predfull

  5. Guan et al.

  6. MS2CNN

  7. DeepDIA:

  8. pDeepXL:

  9. Alpha-Frag:

  10. Prosit Transformer:

  11. PrAI-frag

Peptide retention time prediction

  1. AutoRT

  2. Prosit

  3. DeepMass

  4. Guan et al.

  5. DeepDIA:

  6. DeepRT:

  7. DeepLC:

  8. xiRT:

Peptide CCS prediction

  1. DeepCollisionalCrossSection:

Peptide detectability prediction

  1. Yu et. al.:

MS/MS spectrum quality prediction

  1. SPEQ:

Peptide identification

  1. DeepNovo: De novo peptide sequencing

  2. DeepNovo-DIA: De novo peptide sequencing

  3. SMSNet: De novo peptide sequencing

  4. DeepRescore: Leveraging deep learning to improve peptide identification

  5. PointNovo: De novo peptide sequencing

  6. pValid 2: Leveraging deep learning to improve peptide identification

  7. Casanovo: De novo peptide sequencing

  8. PepNet: De novo peptide sequencing

  9. DePS: De novo peptide sequencing

  10. DeepSCP: Utilizing deep learning to boost single-cell proteome coverage

  11. SpeCollate: Deep cross-modal similarity network for mass spectrometry data based peptide deductions

  12. yHydra: Deep Learning enables an Ultra Fast Open Search by Jointly Embedding MS/MS Spectra and Peptides of Mass Spectrometry-based Proteomics

  13. MSBooster: Improving Peptide Identification Rates using Deep Learning-Based Features

  14. inSPIRE: An open-source tool for increased mass spectrometry identification rates using Prosit spectral prediction

Data-independent acquisition mass spectrometry

  1. Alpha-XIC - Source code: https://github.com/YuAirLab/Alpha-XIC

  2. DeepDIA:

  3. DeepPhospho:

Protein post-translational modification site prediction

  1. DeepACE

  2. Deep-PLA

  3. DeepAcet

  4. DNNAce

  5. pKcr

  6. DeepGly

  7. Longetal2018

  8. MUscADEL

  9. LEMP

  10. DeepNitro

  11. MusiteDeep

  12. NetPhosPan

  13. DeepPhos

  14. EMBER

  15. DeepKinZero

  16. CapsNet_PTM

  17. GPS-Palm

  18. CNN-SuccSite

  19. DeepUbiquitylation

  20. DeepUbi

  21. Sohoko-Kcr

MHC-peptide binding prediction

  1. ConvMHC

  2. HLA-CNN

  3. DeepMHC

  4. DeepSeqPan

  5. AI-MHC

  6. DeepSeqPanII

  7. MHCSeqNet

  8. MARIA

  9. MHCflurry

  10. DeepHLApan

  11. ACME

  12. EDGE

  13. CNN-NF

  14. MHCnuggets

  15. DeepNeo

  16. DeepLigand

  17. PUFFIN

  18. NeonMHC2

  19. USMPep

  20. MHCherryPan

  21. DeepAttentionPan

Benchmarking

  1. Xu R, Sheng J, Bai M, et al. "A comprehensive evaluation of MS/MS spectrum prediction tools for shotgun proteomics". Proteomics, 2020, 20(21-22): 1900345.
  2. Wenrong Chen, Elijah N. McCool, Liangliang Sun, Yong Zang, Xia Ning, Xiaowen Liu. "Evaluation of Machine Learning Models for Proteoform Retention and Migration Time Prediction in Top-Down Mass Spectrometry". J. Proteome Res. (2022).
  3. Emily Franklin, Hannes L. Röst, "Comparing Machine Learning Architectures for the Prediction of Peptide Collisional Cross Section". bioRxiv (2022).

Reviews about deep learning in proteomics

  1. Wen, B., Zeng, W.-F., Liao, Y., Shi, Z., Savage, S. R., Jiang, W., Zhang, B., "Deep Learning in Proteomics". Proteomics 2020, 20, 1900335.
  2. Meyer, Jesse G. "Deep learning neural network tools for proteomics". Cell Reports Methods (2021): 100003.
  3. Matthias Mann, Chanchal Kumar, Wen-Feng Zeng, Maximilian T. Strauss, Artificial intelligence for proteomics and biomarker discovery. Cell Systems 12, August 18, 2021.
  4. Yang, Y., Lin L., Qiao L., "Deep learning approaches for data-independent acquisition proteomics". Expert Review of Proteomics 17 Dec 2021.
  5. Cox, J. "Prediction of peptide mass spectral libraries with machine learning". Nat Biotechnol (2022).

About

A list of tools on proteomics using deep learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published