Skip to content

Code for "Multi-Level Cross-Modal Alignment for Speech Relation Extraction" (EMNLP 2024)

Notifications You must be signed in to change notification settings

DeepLearnXMU/SpeechRE-MCAM

Repository files navigation

SpeechRE

TTS for Text-to-Speech;

IWSLT for SpeechRE, and the model is placed in fairseq_modules;

fairseq is a modified version in source code;

Notice:

We implement our model in Speech_RE/IWSLT/fairseq_modules/models/wav2triplet_s2t.py

Our loss function is implemented in Speech_RE/fairseq/fairseq/criterions/label_smoothed_cross_entropy.py

Our cross-modal entity alignment method is implemented in Speech_RE/fairseq/fairseq/transformer.py (Alignment_forward function)

Our configuration file is Speech_RE/IWSLT/config/speechre_tacred_part_part.yaml

The training script for our model is placed in Speech_RE/IWSLT/run_train.sh

Dataset

Configuration information of the dataset synthesized by TTS:

conll04.tgz:https://drive.google.com/file/d/1Q5k3eM6WknfjA2DWo19CyTwZngYVXRUL/view?usp=sharing

re-tacred(dev&test_part).tgz:https://drive.google.com/file/d/1qctG-n_W51zp-hiPDS-XEl7jh_bI1l_-/view?usp=sharing

re-tacred(train_part).tgz:https://drive.google.com/file/d/1ainRqlx4h9_HDFtOq8xasN-OLJDNSbwD/view?usp=sharing

For example, the data of CoNLL04 is organized as:

├── conll04
│   ├── audio
│   │   ├── train
│   │   │   ├── train-0.wav
│   │   │   ├── train-1.wav
│   │   │   ├── train-2.wav
│   │   │   ├── ...
│   │   ├── dev
│   │   │   ├── dev-0.wav
│   │   │   ├── ...
│   │   ├── test
│   │   │   ├── test-0.wav
│   │   │   ├── ...
│   ├── train_conll04.tsv
│   ├── dev_conll04.tsv
│   ├── test_conll04.tsv

The format of tsv files:

id audio duration_ms n_frames tgt_text speaker tgt_lang
train-0 /path/to/datasets/conll04/audio/train/train-0.wav:0:239828 14989 239828 Radio Reloj Network Havana OrgBased_In 0 en
train-1 /path/to/datasets/conll04/audio/train/train-1.wav:0:64099 4006 64099 Bruno Pusterla Italian Agricultural Confederation Work_For 0 en
...

Notice: The real dataset we constructed will be released soon.

About

Code for "Multi-Level Cross-Modal Alignment for Speech Relation Extraction" (EMNLP 2024)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published