forked from AnyLoc/AnyLoc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpatch_clip.py
executable file
·534 lines (485 loc) · 22.4 KB
/
patch_clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
# Perform qualitative analysis of top-K retrievals
"""
CLIP on patches of image -> VLAD
DEPRECATED: This script is deprecated.
Use CLIP as a global image descriptor and perform top-K retrievals
from a given image sequence.
The script assumes that the image sequence is of `datasets-vg`
format.
The path to the datasets folder has to be specified in configs (or
argument).
Definition of successful retrieval:
A retrieval is successful if there is at least one database image
retrieved in the top-k closest retrievals the to query.
> Note: Currently, five crops and other methods are not
implemented. Only a single image `hard_resize` is implemented.
"""
# %%
# Python path gimmick
import os
import sys
from pathlib import Path
# Set the "./../" from the script folder
dir_name = None
try:
dir_name = os.path.dirname(os.path.realpath(__file__))
except NameError:
print("WARNING: __file__ not found, trying local")
dir_name = os.path.abspath('')
lib_path = os.path.realpath(f"{Path(dir_name).parent}")
# Add to path
if lib_path not in sys.path:
print(f"Adding library path: {lib_path} to PYTHONPATH")
sys.path.append(lib_path)
else:
print(f"Library path {lib_path} already in PYTHONPATH")
# %%
# Import everything
import numpy as np
import torch
import faiss
import fast_pytorch_kmeans as fpk
from torch.utils.data import DataLoader
from torchvision import transforms as tvf
import matplotlib.pyplot as plt
from PIL import Image
import traceback
from tqdm.auto import tqdm
import time
import joblib
# Internal packages
from dvgl_benchmark.datasets_ws import BaseDataset
from custom_datasets.baidu_dataloader import Baidu_Dataset
from custom_datasets.oxford_dataloader import Oxford
from custom_datasets.gardens import Gardens
from clip_wrapper import ClipWrapper as Clip
from utilities import to_np, to_pil_list, pad_img, seed_everything
import pdb
import wandb
# %%
# Local configurations for this script
import tyro
from configs import device
from configs import ProgArgs, prog_args
from configs import BaseDatasetArgs, base_dataset_args
from dataclasses import dataclass, field
from typing import Literal, Union, Tuple, List
@dataclass
class LocalArgs:
"""
Local arguments for the program
"""
prog: ProgArgs = prog_args
bd_args: BaseDatasetArgs = base_dataset_args
# Batch size for processing images (set 1 for good cache)
batch_size: int = 1
# Experiment identifier for cache (set to False to disable cache)
exp_id: Union[str, bool] = False
"""
The results cache (joblib dump of 'dict') is saved in:
- if `exp_id` is a string,
caching_directory/experiments/`exp_id`
- if `exp_id` is True, the images are stored in
caching_directory
- if `exp_id` is False, the result is not saved (only printed
in the end)
The file name is 'results_`timestamp`.gz'
"""
# CLIP Implementation (OpenAI or Open CLIP)
clip_impl: Literal["openai", "open_clip"] = Clip.IMPL_OPENAI
# CLIP backbone architecture
clip_backbone: str = "ViT-B/32"
# CLIP pre-trained dataset (mainly for Open CLIP implementation)
clip_pretrained: Union[None, str] = None
# Dataset split (for dataloader)
data_split: Literal["train", "test", "val"] = "test"
# Values for top-k (for monitoring)
top_k_vals: List[int] = field(default_factory=lambda:\
list(range(1, 21, 1)))
# Percentage of queries to save as qualitative results
qual_result_percent: float = 0.025
"""
If there are 1000 queries and this is 0.025, then there will
be about 25 images saved (sampled through uniform).
Images are saved in the folder:
- if `exp_id` is a string,
caching_directory/experiments/`exp_id`/qualitative_retr
- if `exp_id` is False, the images are not stored (since
caching is disabled)
- if `exp_id` is True, the images are stored in
caching_directory/qualitative_retr
The images are saved as the file name (if saving is enabled):
`Q_{i_qu}_Top_{rec_i}.png` in the folder
> Tip: If you set this to 0, then no images are saved
"""
# Number of retrievals to show in the qualitative results
qual_num_rets: int = 5
# Similarity search
faiss_method: Literal["l2", "cosine"] = "cosine"
"""
Method (base index) to use for faiss nearest neighbor search.
Find the complete table at [1].
- "l2": The euclidean distances are used.
- "cosine": The cosine distances (dot product) are used.
Note that the descriptors given to the 'get_recalls' function
are normalized beforehand.
[1]: https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
"""
# Use concatenation based Global Descriptors
use_concat: Literal[1, 0] = bool(0)
# Use summation based Global Descriptors
use_sum: Literal[1, 0] = bool(0)
# Use vlad based Global Descriptors
use_vlad: Literal[1, 0] = bool(0)
# Use soft assignment for VLAD encoding
vlad_soft_assign: Literal[1, 0] = bool(0)
# Softmax Temperature for soft-cluster assignment
soft_assign_temp: int = 1
# Number of Clusters for vlad based Global Descriptors
num_clusters: int = 4
# Number of Patches into which the image should be divided
num_patches: int = 4
# Utility to visualize image
def visualize_tensor(tensor):
minFrom= tensor.min()
maxFrom= tensor.max()
minTo = 0
maxTo=1
viz_tensor = minTo + (maxTo - minTo) * ((tensor - minFrom) / (maxFrom - minFrom))
viz_tensor = viz_tensor.permute((1, 2, 0)).detach().cpu().numpy()
return viz_tensor
# %%
# Build cache of all images in the dataset
def build_cache(largs: LocalArgs, vpr_dl: DataLoader, model: Clip) \
-> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Builds the cache files, and returns the descriptors for the
database and queries (along with positives_per_query)
Parameters:
- largs: Local arguments for this file
- vpr_dl: DataLoader for retrieving the images
- model: The CLIP model
Returns:
- db_descs: Database image descriptors of shape
[N_db, D=512]
- qu_descs: Query image descriptors of shape [N_qu, D=512]
- pos_per_qu: Positives (within a distance threshold) per
query index. [N_qu, ] list (object) with each
index containing positive sample indices.
"""
full_res = []
for batch in tqdm(vpr_dl):
img_batch, ind_batch = batch[0], batch[1]
assert img_batch.shape[0] == 1, "Batch size should be 1"
# Get height and width of image
img = img_batch[0]
img_H, img_W = img.shape[1], img.shape[2]
# Kernel and Stride size for creating patches
kernel_size_h, stride_h = int(img_H * 2/largs.num_patches), int(img_H * 2/largs.num_patches)
kernel_size_w, stride_w = int(img_W * 2/largs.num_patches), int(img_W * 2/largs.num_patches)
# Convert Image to Patches
patches = img.unfold(1, kernel_size_h, stride_h).unfold(2, kernel_size_w, stride_w)
patches = patches.contiguous().view(patches.size(0), -1, kernel_size_h, kernel_size_w)
patches = patches.permute((1, 0, 2, 3))
# Encode Patches using CLIP
with torch.no_grad():
res = model.encode_image(patches, ci=int(ind_batch))
# Append unsqueezed patch CLIP descriptors
full_res.append(res.unsqueeze(0))
# All Descriptors
full_res = torch.concat(full_res, dim=0)
full_res = full_res.detach().cpu()
# Get Descriptors corresponding to Database and Query
db_num = vpr_dl.dataset.database_num
database_descs = full_res[:db_num]
queries_descs = full_res[db_num:]
return database_descs, queries_descs, vpr_dl.dataset.soft_positives_per_query
# %%
# Get recalls through similarity search
def get_recalls(largs: LocalArgs, ndb_descs: np.ndarray,
nqu_descs: np.ndarray, pos_per_qu: np.ndarray,
vpr_dl:Union[None, DataLoader]=None, use_percentage=True,
use_gpu: bool=True, save_figs:bool= True):
"""
Calculate the recalls through similarity search (using cosine
distances).
Parameters:
- largs: Local arguments to program. The following are used
- top_k_vals: For getting keys
- ndb_descs: Normalized database descriptors [N_d, D]
- nqu_descs: Normalized query descriptors [N_q, D]
- pos_per_qu: Positives (within a distance threshold) per
query index. [N_qu, ] list (object) with each
index containing positive sample indices.
- vpr_dl: DataLoader for images (used for getting
qualitative results). Pass None if certain of
no qualitative results (see `save_figs`).
- use_percentage: If true, the recall is between [0, 1] and
not absolute. It's divided by N_q.
- use_gpu: Use GPU for faiss (else use CPU)
- save_figs: Save the qualitative results (if False, no
qualitative results are saved, and if True,
then saving depends on LocalArgs `exp_id`)
Returns:
- recalls: A dictionary of retrievals
"""
# Saving preferences
query_color = (125, 0, 125) # RGB for query image (1st)
false_color = (255, 0, 0) # False retrievals
true_color = ( 0, 255, 0) # True retrievals
padding = 20
qimgs_result, qimgs_dir = True, \
f"{largs.prog.cache_dir}/qualitative_retr" # Directory
if largs.exp_id == False or largs.exp_id is None: # Don't store
qimgs_result, qimgs_dir = False, None
elif type(largs.exp_id) == str:
if not largs.use_vlad:
qimgs_dir = f"{largs.prog.cache_dir}/experiments/"\
f"{largs.exp_id}/qualitative_retr"
else:
qimgs_dir = f"{largs.prog.cache_dir}/experiments/"\
f"{largs.exp_id}/qualitative_retr_vlad_nc{largs.num_clusters}"
qimgs_inds = []
if (not save_figs) or largs.qual_result_percent <= 0:
qimgs_result = False
if not qimgs_result: # Saving query images
print("Not saving qualitative results")
else:
_n_qu = nqu_descs.shape[0]
qimgs_inds = np.random.default_rng().choice(
range(_n_qu), int(_n_qu * largs.qual_result_percent),
replace=False) # Qualitative images to save
print(f"There are {_n_qu} query images")
print(f"Will save {len(qimgs_inds)} qualitative images")
if not os.path.isdir(qimgs_dir):
os.makedirs(qimgs_dir) # Ensure folder exists
print(f"Created qualitative directory: {qimgs_dir}")
else:
print(f"Saving qualitative results in: {qimgs_dir}")
# FAISS search
max_k = max(largs.top_k_vals)
D = ndb_descs.shape[1]
recalls = dict(zip(largs.top_k_vals, [0]*len(largs.top_k_vals)))
if largs.faiss_method == "cosine":
index = faiss.IndexFlatIP(D)
elif largs.faiss_method == "l2":
index = faiss.IndexFlatL2(D)
else:
raise Exception(f"FAISS method: {largs.faiss_method}!")
if use_gpu:
print("Running GPU faiss index")
res = faiss.StandardGpuResources() # use a single GPU
index = faiss.index_cpu_to_gpu(res, 0, index)
index.add(ndb_descs) # Add database
# Distances and indices are [N_q, max_k] shape
distances, indices = index.search(nqu_descs, max_k) # Query
for i_qu, qu_retr_maxk in enumerate(indices):
for i_rec in largs.top_k_vals:
correct_retr_qu = pos_per_qu[i_qu] # Ground truth
if np.any(np.isin(qu_retr_maxk[:i_rec], correct_retr_qu)):
recalls[i_rec] += 1 # Query retrieved correctly
if i_qu in qimgs_inds and qimgs_result:
# Save qualitative results
qual_top_k = qu_retr_maxk[:largs.qual_num_rets]
correct_retr_qu = pos_per_qu[i_qu]
color_mask = np.isin(qual_top_k, correct_retr_qu)
colors_all = [true_color if x else false_color \
for x in color_mask]
retr_dists = distances[i_qu, :largs.qual_num_rets]
img_q = to_pil_list( # Dataset is [database] + [query]
vpr_dl.dataset[ndb_descs.shape[0]+i_qu][0])[0]
img_q = to_np(img_q, np.uint8)
# Main figure
fig = plt.figure(figsize=(5*(1+largs.qual_num_rets), 5),
dpi=300)
gs = fig.add_gridspec(1, 1+largs.qual_num_rets)
ax = fig.add_subplot(gs[0, 0])
ax.set_title(f"{i_qu} + {ndb_descs.shape[0]}") # DS index
ax.imshow(pad_img(img_q, padding, query_color))
ax.axis('off')
for i, db_retr in enumerate(qual_top_k):
ax = fig.add_subplot(gs[0, i+1])
img_r = to_pil_list(vpr_dl.dataset[db_retr][0])[0]
img_r = to_np(img_r, np.uint8)
ax.set_title(f"{db_retr} ({retr_dists[i]:.4f})")
ax.imshow(pad_img(img_r, padding, colors_all[i]))
ax.axis('off')
fig.set_tight_layout(True)
save_path = f"{qimgs_dir}/Q_{i_qu}_Top_{largs.qual_num_rets}.png"
fig.savefig(save_path)
plt.close(fig)
if largs.prog.wandb_save_qual:
wandb.log({"Qual_Results": wandb.Image(save_path)})
if use_percentage:
for k in recalls:
recalls[k] /= len(indices) # As a percentage of queries
return recalls
# Function for VLAD Encoding
def get_vlad_vector(descriptors, cluster_centroids, cluster_labels, largs):
"""
Computes the VLAD representation for a batch of local descriptors given a set of cluster centroids and cluster labels.
Args:
descriptors (torch.Tensor): A tensor of size (batch_size, num_patches, desc_dim), where batch_size is the batch size, num_patches is the number of local descriptors in each image and desc_dim is the dimensionality of each descriptor.
cluster_centroids (torch.Tensor): A tensor of size (K, desc_dim), where K is the number of clusters and desc_dim is the dimensionality of each cluster centroid.
cluster_labels (torch.Tensor): A tensor of size (batch_size, num_patches), where each element is an integer representing the index of the cluster centroid to which the corresponding descriptor is assigned.
Returns:
vlad_encoding (torch.Tensor): A tensor of size (batch_size, K * desc_dim), representing the VLAD encoding of the input descriptors for each image in the batch.
"""
batch_size, num_patches, desc_dim = descriptors.shape
num_clusters = cluster_centroids.shape[0]
# Compute residuals for each descriptor
residuals = descriptors.unsqueeze(2) - cluster_centroids.view(1, 1, -1, desc_dim)
# Compute softmax-based cluster assignments
soft_assign = torch.nn.functional.softmax(largs.soft_assign_temp * torch.nn.functional.cosine_similarity(descriptors.unsqueeze(2), cluster_centroids.view(1, 1, -1, desc_dim), dim=3), dim=2)
# Compute VLAD encoding by summing residuals for each cluster centroid
vlad_encoding = torch.zeros((batch_size, cluster_centroids.shape[0]*cluster_centroids.shape[1]), device=descriptors.device)
for k in range(num_clusters):
if largs.vlad_soft_assign:
# Soft Cluster Assignment
weight_mask = soft_assign[:, :, k].unsqueeze(-1).unsqueeze(-1)
else:
# Hard Cluster Assignment
weight_mask = torch.zeros_like(residuals, device=residuals.device)
weight_mask[cluster_labels == k, :, :] = 1
residuals_k = residuals * weight_mask
vlad_encoding_k = residuals_k.view(batch_size, -1, desc_dim).sum(dim=1)
vlad_encoding_k = torch.nn.functional.normalize(vlad_encoding_k, dim=-1) # Intra-Normalization
vlad_encoding[:, k*desc_dim:(k+1)*desc_dim] = vlad_encoding_k
# L2-normalize the VLAD encoding
vlad_encoding = torch.nn.functional.normalize(vlad_encoding, dim=-1)
return vlad_encoding
# %%
# Main function
def main():
largs = tyro.cli(LocalArgs)
print(f"Arguments: {largs}")
seed_everything()
# Launch Wandb
wandb.init(project=largs.prog.wandb_proj, entity=largs.prog.wandb_entity, config=largs, group=largs.prog.wandb_group, name=largs.prog.wandb_run_name)
print("------------------ CLIP Model ------------------")
model = Clip(largs.clip_impl, largs.clip_backbone,
largs.clip_pretrained, use_caching=largs.exp_id,
base_cache_dir=largs.prog.cache_dir,
device=device)
print("-------------- CLIP model loaded --------------")
print("-------- Generating Patch Descriptors --------")
datasets_dir = largs.prog.data_vg_dir
dataset_name = largs.prog.vg_dataset_name
print(f"Dataset directory: {datasets_dir}")
print(f"Dataset name: {dataset_name}")
print(f"Dataset split: {largs.data_split}")
if dataset_name=="baidu_datasets":
vpr_ds = Baidu_Dataset(largs.bd_args,datasets_dir,dataset_name,largs.data_split,use_mixVPR=True)
elif dataset_name=="Oxford":
vpr_ds = Oxford(datasets_dir,use_mixVPR=True)
elif dataset_name=="gardens":
vpr_ds = Gardens(largs.bd_args,datasets_dir,dataset_name,largs.data_split,use_mixVPR=True)
else:
vpr_ds = BaseDataset(largs.bd_args, datasets_dir, dataset_name,
largs.data_split,use_mixVPR=True)
vpr_dl = DataLoader(vpr_ds, largs.batch_size, pin_memory=True, shuffle=False)
db_descs, qu_descs, pos_pq = build_cache(largs, vpr_dl, model)
# Normalize the descriptors
ndb_descs = torch.nn.functional.normalize(db_descs, p=2, dim=-1)
nqu_descs = torch.nn.functional.normalize(qu_descs, p=2, dim=-1)
print("-------- Patch descriptors generated --------")
if largs.use_concat:
print("-------- Generating Global Descriptors based on Concatenation --------")
# Concatenate Patch Descriptors
ndb_descs = torch.flatten(ndb_descs, start_dim=1)
nqu_descs = torch.flatten(nqu_descs, start_dim=1)
# L2 Normalize Final Concat Descriptors
ndb_descs = torch.nn.functional.normalize(ndb_descs, p=2, dim=-1)
nqu_descs = torch.nn.functional.normalize(nqu_descs, p=2, dim=-1)
print("-------- Concat Global Descriptors generated --------")
elif largs.use_vlad:
print("-------- Generating VLAD based Global Descriptors --------")
print("-------- Num of Clusters: {} --------".format(largs.num_clusters))
# Patch Descriptors of all Database images
ndb_patch_descs = ndb_descs.view(-1, ndb_descs.shape[2])
# Kmeans on Database Patch Descriptors
kmeans = fpk.KMeans(n_clusters=largs.num_clusters, mode='cosine')
labels = kmeans.fit_predict(ndb_patch_descs)
db_cluster_labels = labels.view(ndb_descs.shape[0], -1)
# Cluser Labels of Query Patch Descriptors
nqu_patch_descs = nqu_descs.view(-1, nqu_descs.shape[2])
qu_labels = kmeans.predict(nqu_patch_descs)
qu_cluster_labels = qu_labels.view(nqu_descs.shape[0], -1)
# VLAD Global Descriptors based on Patch Descriptors
ndb_descs = get_vlad_vector(ndb_descs, kmeans.centroids, db_cluster_labels, largs)
nqu_descs = get_vlad_vector(nqu_descs, kmeans.centroids, qu_cluster_labels, largs)
print("-------- VLAD based Global descriptors generated --------")
elif largs.use_sum:
print("-------- Generating Global Descriptors based on Summation --------")
# Sum Patch Descriptors
ndb_descs = torch.sum(ndb_descs, dim=1)
nqu_descs = torch.sum(nqu_descs, dim=1)
# L2 Normalize Final Summation Descriptors
ndb_descs = torch.nn.functional.normalize(ndb_descs, p=2, dim=-1)
nqu_descs = torch.nn.functional.normalize(nqu_descs, p=2, dim=-1)
print("-------- Summation Global Descriptors generated --------")
else:
raise NotImplementedError
# Convert Torch tensors to Numpy arrays
ndb_descs = ndb_descs.numpy()
nqu_descs = nqu_descs.numpy()
print("----------- FAISS Search started -----------")
recalls = get_recalls(largs, ndb_descs, nqu_descs, pos_pq, vpr_dl)
print("------------ FAISS Search ended ------------")
print("----------------- Results -----------------")
ts = time.strftime(f"%Y_%m_%d_%H_%M_%S")
caching_directory = largs.prog.cache_dir
results = {
"CLIP-impl": str(largs.clip_impl),
"CLIP-backbone": str(largs.clip_backbone),
"CLIP-pretrained": str(largs.clip_pretrained),
"Experiment-ID": str(largs.exp_id),
"Cache-dir": str(largs.prog.cache_dir),
"Dataset-name": str(dataset_name),
"Timestamp": str(ts),
"FAISS-metric": largs.faiss_method,
"Num of Patches": largs.num_patches,
"Use-Concat-Agg": largs.use_concat,
"Use-VLAD-Agg": largs.use_vlad,
"Num of Clusters": largs.num_clusters
}
for tk in recalls.keys():
key = f"R@{tk}"
results[key] = recalls[tk]
print("Results:")
for k in results:
print(f"- {k}: {results[k]}")
# Log to Wandb
wandb.log(results)
# Close Wandb
wandb.finish()
save_res_file = None
if largs.exp_id == True:
save_res_file = caching_directory
elif type(largs.exp_id) == str:
save_res_file = f"{caching_directory}/experiments/"\
f"{largs.exp_id}"
if save_res_file is not None:
if not os.path.isdir(save_res_file):
os.makedirs(save_res_file)
if not largs.use_vlad:
save_res_file = f"{save_res_file}/results_{ts}.gz"
else:
save_res_file = f"{save_res_file}/results_vlad_nc{largs.num_clusters}_{ts}.gz"
print(f"Saving result in: {save_res_file}")
joblib.dump(results, save_res_file)
else:
print("Not saving results")
print("--------------------- END ---------------------")
# Main entrypoint
if __name__ == "__main__" and (not "ipykernel" in sys.argv[0]):
try:
main()
except (Exception, SystemExit) as exc:
print(f"Exception: {exc}")
if str(exc) == "0":
print("[INFO]: Exit is safe")
else:
print("[ERROR]: Exit is not safe")
traceback.print_exc()
# %%