forked from AnyLoc/AnyLoc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmae_vlad_viz.py
489 lines (453 loc) · 17.9 KB
/
mae_vlad_viz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# Visualizing VLAD clusters for MAE
"""
"""
# %%
import os
import sys
from pathlib import Path
# Set the './../' from the script folder
dir_name = None
try:
dir_name = os.path.dirname(os.path.realpath(__file__))
except NameError:
print('WARN: __file__ not found, trying local')
dir_name = os.path.abspath('')
lib_path = os.path.realpath(f'{Path(dir_name).parent}')
# Add to path
if lib_path not in sys.path:
print(f'Adding library path: {lib_path} to PYTHONPATH')
sys.path.append(lib_path)
else:
print(f'Library path {lib_path} already in PYTHONPATH')
# %%
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.transforms import functional as tvf
import numpy as np
import tyro
import einops as ein
from tqdm.auto import tqdm
import models_mae
from dataclasses import dataclass, field
import time
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.lines import Line2D
import joblib
import wandb
import traceback
import cv2 as cv
import imageio.v2 as imageio
from configs import ProgArgs, prog_args, BaseDatasetArgs, \
base_dataset_args, device
from typing import Union, Literal, Tuple, List
from utilities import VLAD, get_top_k_recall, seed_everything
from dvgl_benchmark.datasets_ws import BaseDataset
from custom_datasets.baidu_dataloader import Baidu_Dataset
from custom_datasets.oxford_dataloader import Oxford
from custom_datasets.gardens import Gardens
def color_map_color(value, cmap_name='jet', vmin=0, vmax=1):
norm = plt.Normalize(vmin, vmax)
cmap = cm.get_cmap(cmap_name)
rgb = cmap(norm(abs(value)))[:3] # will return rgba, we take only first 3 so we get rgb
return rgb
# %%
@dataclass
class LocalArgs:
# Program arguments (dataset directories and wandb)
prog: ProgArgs = ProgArgs(use_wandb=False,
vg_dataset_name="17places")
# BaseDataset arguments
bd_args: BaseDatasetArgs = base_dataset_args
# Experiment identifier (None = don't use)
exp_id: Union[str, None] = None
# MAE model parameters
ckpt_path: Path = "./models/mae/"\
"mae_visualize_vit_large_ganloss.pth"
"""
Path to the MAE model checkpoint.
"""
# MAE model type (should be compatible with the checkpoint)
mae_model: Literal["mae_vit_base_patch16",
"mae_vit_large_patch16", "mae_vit_huge_patch14"] = \
"mae_vit_large_patch16"
# Mask ratio for MAE (0.0 = no masking) (should be in [0, 1])
mask_ratio: float = 0.0
# If True, use the CLS token in VLAD, else discard it.
use_cls_token: bool = False
# Center crop image
center_crop: bool = False
"""
The MAE takes a square image as input. If this is True, the
image is center-cropped to a square image before being reduced
to the required size. If False, the image is directly resized
to the required size ('down_scale_res').
"""
# Number of clusters for VLAD
num_clusters: int = 16
# Down-scaling H, W resolution for images (before giving to MAE)
down_scale_res: Tuple[int, int] = (224, 224)
# Dataset split for VPR (BaseDataset)
data_split: Literal["train", "test", "val"] = "test"
# Sub-sample query images (RAM or VRAM constraints) (1 = off)
sub_sample_qu: int = 1
# Sub-sample database images (RAM or VRAM constraints) (1 = off)
sub_sample_db: int = 1
# Sub-sample database images for VLAD clustering only
sub_sample_db_vlad: int = 1
"""
Use sub-sampling for creating the VLAD cluster centers. Use
this to reduce the RAM usage during the clustering process.
Unlike `sub_sample_qu` and `sub_sample_db`, this is only used
for clustering and not for the actual VLAD computation.
"""
# Override the query indices (None = don't use override)
qu_indices: Union[List[int], None] = None
# Override queries to be placed in database images
qu_in_db: bool = False
"""
If True, the 'qu_indices' are treated in the database set and
not the query set. This setting is valid only if 'qu_indices'
is not None.
"""
# Values for top-k (for monitoring)
top_k_vals: List[int] = field(default_factory=lambda:\
list(range(1, 21, 1)))
# Show a matplotlib plot for recalls
show_plot: bool = False
# Use hard or soft descriptor assignment for VLAD
vlad_assignment: Literal["hard", "soft"] = "hard"
# Softmax temperature for VLAD (soft assignment only)
vlad_soft_temp: float = 1.0
# Caching configuration
cache_vlad_descs: bool = False
# Save the resultant images as a GIF (filename is timestamp)
save_gif: bool = False
# %%
# ---------------- Functions ----------------
@torch.no_grad()
def build_res(largs: LocalArgs, vpr_ds: BaseDataset,
verbose: bool=True, run_db: bool=True) \
-> Tuple[Union[torch.Tensor, None], torch.Tensor,
torch.Tensor]:
"""
Builds and returns the cluster residuals for queries. Also
has the option to return the database VLADs as well.
Parameters:
- largs: LocalArgs Local arguments for the file
- vpr_ds: BaseDataset The dataset containing database and
query images
- verbose: bool Prints progress if True
- run_db: bool If True, also returns the database VLADs.
Else, returns None for the database VLADs.
Returns:
-
"""
cache_dir = None
if largs.cache_vlad_descs:
cache_dir = f"{largs.prog.cache_dir}/vlad_descs/MAE/" \
f"{largs.prog.vg_dataset_name}/" \
f"{largs.mae_model}-C{largs.num_clusters}"
if verbose:
print(f"Using cache directory: {cache_dir}")
# Build VLAD representations (global descriptors)
vlad = VLAD(largs.num_clusters, None,
vlad_mode=largs.vlad_assignment,
soft_temp=largs.vlad_soft_temp, cache_dir=cache_dir)
# Load MAE model
ckpt_path = os.path.realpath(os.path.expanduser(largs.ckpt_path))
assert os.path.isfile(ckpt_path), \
f"Checkpoint not found: {ckpt_path}"
model: models_mae.MaskedAutoencoderViT = getattr(models_mae,
largs.mae_model)(ret_latents=True)
# Load checkpoint
ckpt = torch.load(ckpt_path, map_location="cpu")
msg = model.load_state_dict(ckpt["model"], strict=False)
if verbose:
print(f"Model loaded: {msg}")
model = model.to(device)
if verbose:
print(f"Model moved to: {device}")
def extract_patch_descriptors(indices):
patch_descs = []
for i in tqdm(indices, disable=(not verbose)):
img = vpr_ds[i][0]
img = ein.rearrange(img, "c h w -> 1 c h w").to(device)
if largs.center_crop:
img = tvf.center_crop(img, min(img.shape[2:]))
img = F.interpolate(img, largs.down_scale_res)
loss, y, mask, latent = model(img,
mask_ratio=largs.mask_ratio)
if not largs.use_cls_token: # [1, n_p=(n_h*n_w), d_dim]
latent: torch.Tensor = latent[:, 1:, :]
patch_descs.append(latent.squeeze().cpu())
patch_descs = torch.stack(patch_descs)
return patch_descs
# Get the database descriptors
num_db = vpr_ds.database_num
ds_len = len(vpr_ds)
assert ds_len > num_db, "Either no queries or length mismatch"
if vlad.can_use_cache_vlad():
if verbose:
print("Valid cache found, using it")
vlad.fit(None) # Nothing to fit (restore cache)
else:
# Get cluster centers in the VLAD
if verbose:
print("Building VLAD cluster centers...")
db_indices = np.arange(0, num_db, largs.sub_sample_db_vlad)
# Database descriptors (for VLAD clusters): [n_db, n_d, d_dim]
full_db_vlad = extract_patch_descriptors(db_indices)
if verbose:
print(f"Database (for VLAD) shape: {full_db_vlad.shape}")
d_dim = full_db_vlad.shape[2] # Should be 1024
if verbose:
print(f"Descriptor dimensionality: {d_dim}")
vlad.fit(ein.rearrange(full_db_vlad, "n k d -> (n k) d"))
del full_db_vlad
if verbose:
print(f"VLAD cluster centers shape: "\
f"{vlad.c_centers.shape}, ({vlad.c_centers.dtype})")
if run_db:
# Get VLADs of the database
if verbose:
print("Building VLADs for database...")
db_indices = np.arange(0, num_db, largs.sub_sample_db)
db_img_names = vpr_ds.get_image_relpaths(db_indices)
if vlad.can_use_cache_ids(db_img_names):
if verbose:
print("Valid cache found, using it")
db_vlads = vlad.generate_multi([None] * len(db_indices),
db_img_names)
else:
if verbose:
print("Valid cache not found, doing forward pass")
# All database descs (local): [n_db, n_d, d_dim]
full_db = extract_patch_descriptors(db_indices)
if verbose:
print(f"Full database descriptor shape: " \
f"{full_db.shape}")
db_vlads: torch.Tensor = vlad.generate_multi(full_db,
db_img_names)
del full_db
if verbose:
print(f"Database VLADs shape: {db_vlads.shape}")
else:
db_vlads = None
# Get VLADs of the queries
if verbose:
print("Building VLADs for queries...")
if largs.qu_indices is None:
qu_indices = np.arange(num_db, ds_len, largs.sub_sample_qu)
else:
if largs.qu_in_db:
qu_indices = np.array(largs.qu_indices)
else:
qu_indices = np.array(largs.qu_indices) + num_db
qu_img_names = vpr_ds.get_image_relpaths(qu_indices)
if vlad.can_use_cache_ids(qu_img_names, only_residuals=True):
if verbose:
print("Valid cache found, using it")
qu_residuals: torch.Tensor = vlad.generate_multi_res_vec(
[None] * len(qu_indices), qu_img_names)
else:
if verbose:
print("Valid cache not found, doing forward pass")
full_qu = extract_patch_descriptors(qu_indices)
if verbose:
print(f"Full query descriptor shape: {full_qu.shape}")
qu_residuals: torch.Tensor = vlad.generate_multi_res_vec(
full_qu, qu_img_names)
if verbose:
print(f"Full query descriptor shape: {full_qu.shape}")
del full_qu
if verbose:
print(f"Query Residuals shape: {qu_residuals.shape}")
# Return VLADs
return db_vlads, vlad.c_centers, qu_residuals
# %%
@torch.no_grad()
def main(largs: LocalArgs):
print(f"Arguments: {largs}")
seed_everything(42)
if largs.prog.use_wandb:
# Launch WandB
wandb_run = wandb.init(project=largs.prog.wandb_proj,
entity=largs.prog.wandb_entity, config=largs,
group=largs.prog.wandb_group,
name=largs.prog.wandb_run_name)
print(f"Initialized WandB run: {wandb_run.name}")
print("--------- Generating VLADs ---------")
ds_dir = largs.prog.data_vg_dir
ds_name = largs.prog.vg_dataset_name
print(f"Dataset directory: {ds_dir}")
print(f"Dataset name: {ds_name}, split: {largs.data_split}")
# Load dataset
if ds_name=="baidu_datasets":
vpr_ds = Baidu_Dataset(largs.bd_args, ds_dir, ds_name,
largs.data_split)
elif ds_name=="Oxford":
vpr_ds = Oxford(ds_dir)
elif ds_name=="gardens":
vpr_ds = Gardens(largs.bd_args,ds_dir,ds_name,largs.data_split)
else:
vpr_ds = BaseDataset(largs.bd_args, ds_dir, ds_name,
largs.data_split)
# Get VLADs of the database
# From: qu_residuals: [n_qu, 196=(14*14), n_c, d_dim]
db_vlads, vlad_cluster_centers, qu_residuals = build_res(largs,
vpr_ds)
print("--------- Generated VLADs ---------")
print("-------- Visualizing Cluster Centers Assignment -------")
# Visualize VLAD clusters
colors = np.zeros((largs.num_clusters,3))
legend_lines = []
legend_nums = []
for j in range(largs.num_clusters):
colors[j,:] = color_map_color(j/(largs.num_clusters-1))
custom_line = Line2D([0], [0], color = color_map_color(
j/(largs.num_clusters-1)), lw=4)
legend_lines.append(custom_line)
legend_nums.append(str(j))
# Ensure that save directory exists
save_fldr = largs.prog.cache_dir
if largs.exp_id is not None:
save_fldr = f"{save_fldr}/experiments/{largs.exp_id}"
save_fldr = f"{save_fldr}/vlad_clusters_viz"
save_fldr = os.path.realpath(os.path.expanduser(save_fldr))
if not os.path.exists(save_fldr):
os.makedirs(save_fldr)
else:
print(f"WARNING: Folder {save_fldr} exists! overwriting...")
print(f"Saving images in: {save_fldr}")
# Loop through all query images
for i in tqdm(range(qu_residuals.shape[0])):
# img_orig = cv2.imread(vpr_ds.q_abs_paths[i])
# img_orig = cv2.resize(img_orig,(14,14))
if largs.qu_indices is None:
qi_ds = vpr_ds.database_num + i*largs.sub_sample_qu
else:
if largs.qu_in_db:
qi_ds = largs.qu_indices[i]
else:
qi_ds = vpr_ds.database_num + largs.qu_indices[i]
img = vpr_ds[qi_ds][0]#.detach().cpu().numpy()
if largs.center_crop:
img = tvf.center_crop(img, min(img.shape[1:]))
img = tvf.resize(img, (14, 14))
# ImageNet normalization
mu = torch.Tensor([0.485, 0.456, 0.406]).unsqueeze(-1)\
.unsqueeze(-1)
std= torch.Tensor([0.229, 0.224, 0.225]).unsqueeze(-1)\
.unsqueeze(-1)
img = img * std + mu
img_orig = img.detach().cpu().numpy()
img_orig = ein.rearrange(img_orig, 'c h w -> h w c') * 255
img_desc = []
# Loop through all the patches inside image (MAE patches)
for j in range(qu_residuals.shape[1]):
cur_res_vec = torch.abs(qu_residuals[i][j])
res_idx = torch.argmin(torch.sum(cur_res_vec, dim=1))
img_desc.append(res_idx)
img_desc = np.reshape(np.asarray(img_desc), (14, 14))
# Color based on the closest clusters
all_color_img = np.zeros_like(img_orig)
for c in range(largs.num_clusters):
img_idx = (np.argwhere(img_desc==c))
all_color_img[img_idx[:,0],img_idx[:,1],:] = colors[c]*255
# Merge cluster color map with original image
img_original = vpr_ds[qi_ds][0]
if largs.center_crop:
img_original = tvf.center_crop(img_original,
min(img_original.shape[1:]))
img_original = img_original * std + mu
img_original = img_original.detach().cpu().numpy()
sz = tuple(img_original.shape[1:]) # [H, W]
img_original = ein.rearrange(img_original, 'c h w -> h w c')
img_original = img_original * 255
all_color_img_resized = cv.resize(all_color_img, sz[::-1],
interpolation=cv.INTER_NEAREST)
color_layer_img = cv.addWeighted(img_original, 0.7,
all_color_img_resized, 0.3, 0)
color_layer_img = color_layer_img/255
fig, ax = plt.subplots()
splits = vpr_ds.get_image_paths()[qi_ds].split("/")[-2:]
f_title = str(os.path.join(*splits))
ax.set_title(f_title)
im = ax.imshow(color_layer_img)
if largs.num_clusters <= 16:
ax.legend(legend_lines, legend_nums, loc='upper left',
bbox_to_anchor=(1.025, 1.05))
else:
# cb = plt.colorbar(im)
# TODO: Want a custom colorbar with color labels?
pass
# plt.show()
fig.set_tight_layout(True)
fig.savefig(f"{save_fldr}/{i}.png")
plt.close()
# If saving GIF
frames = []
if largs.save_gif:
for i in range(qu_residuals.shape[0]):
frames.append(imageio.imread(f"{save_fldr}/{i}.png"))
ts = time.strftime(f"%Y_%m_%d_%H_%M_%S")
imageio.mimsave(f"{save_fldr}/{ts}.gif", frames, fps=1)
print("----- Finished visualization of cluster centers -----")
# %%
if __name__ == "__main__" and ("ipykernel" not in sys.argv[0]):
largs = tyro.cli(LocalArgs, description=__doc__)
_start = time.time()
try:
main(largs)
except:
print("Unhandled exception")
traceback.print_exc()
finally:
print(f"Program ended in {time.time()-_start:.3f} seconds")
exit(0)
# %%
# Experiments
# %%
largs = LocalArgs(prog=ProgArgs(vg_dataset_name="17places",
use_wandb=False), sub_sample_db=5, sub_sample_qu=5,
sub_sample_db_vlad=2, ckpt_path="./../models/mae/"\
"mae_visualize_vit_large_ganloss.pth", save_gif=True,
num_clusters=16, center_crop=True)
print(f"Arguments: {largs}")
# %%
_start = time.time()
try:
main(largs)
except:
print("Unhandled exception")
traceback.print_exc()
finally:
print(f"Program ended in {time.time()-_start:.3f} seconds")
# %%
ds_dir = largs.prog.data_vg_dir
ds_name = largs.prog.vg_dataset_name
print(f"Dataset directory: {ds_dir}")
print(f"Dataset name: {ds_name}, split: {largs.data_split}")
# Load dataset
if ds_name=="baidu_datasets":
vpr_ds = Baidu_Dataset(largs.bd_args, ds_dir, ds_name,
largs.data_split)
elif ds_name=="Oxford":
vpr_ds = Oxford(ds_dir)
elif ds_name=="gardens":
vpr_ds = Gardens(largs.bd_args,ds_dir,ds_name,largs.data_split)
else:
vpr_ds = BaseDataset(largs.bd_args, ds_dir, ds_name,
largs.data_split)
# %%
img = vpr_ds[10][0]
img_s = (img - img.min())/(img.max() - img.min() + 1e-8)
plt.imshow(img_s.detach().cpu().numpy().transpose(1,2,0))
# %%
img = vpr_ds[10][0]
img = tvf.center_crop(img, min(img.shape[1:]))
img_s = (img - img.min())/(img.max() - img.min() + 1e-8)
plt.imshow(img_s.detach().cpu().numpy().transpose(1,2,0))
# %%