forked from AnyLoc/AnyLoc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdino_v2_sim_facets.py
382 lines (362 loc) · 14.5 KB
/
dino_v2_sim_facets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# Visualize similarity across facets for Dino-v2
"""
Script tries to replicate results like Figure 4 of [1].
Given an image with pixel coordinates (for similarity check), a
Dino-v2 model, and a layer, and a target image
- Get the response maps in source and target images (upscaled)
- Do facet-wise similarity for the selected pixel in source in the
target image
[1]: Amir, S., Gandelsman, Y., Bagon, S., & Dekel, T. (2021). Deep ViT Features as Dense Visual Descriptors. ArXiv. /abs/2112.05814
"""
# %%
import os
import sys
from pathlib import Path
# Set the './../' from the script folder
dir_name = None
try:
dir_name = os.path.dirname(os.path.realpath(__file__))
except NameError:
print('WARN: __file__ not found, trying local')
dir_name = os.path.abspath('')
lib_path = os.path.realpath(f'{Path(dir_name).parent}')
# Add to path
if lib_path not in sys.path:
print(f'Adding library path: {lib_path} to PYTHONPATH')
sys.path.append(lib_path)
else:
print(f'Library path {lib_path} already in PYTHONPATH')
# %%
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms as tvf
import numpy as np
import einops as ein
from scipy.stats import mode
from PIL import Image
import cv2 as cv
import tyro
import time
import traceback
import joblib
from utilities import DinoV2ExtractFeatures, seed_everything
import matplotlib.pyplot as plt
from configs import ProgArgs, prog_args, BaseDatasetArgs, \
base_dataset_args, device
from typing import Tuple, Dict, Literal, Optional
from dataclasses import dataclass, field
from dvgl_benchmark.datasets_ws import BaseDataset
from custom_datasets.baidu_dataloader import Baidu_Dataset
from custom_datasets.oxford_dataloader import Oxford
from custom_datasets.gardens import Gardens
from custom_datasets.aerial_dataloader import Aerial
from custom_datasets.hawkins_dataloader import Hawkins
from custom_datasets.vpair_dataloader import VPAir
from custom_datasets.laurel_dataloader import Laurel
from custom_datasets.eiffel_dataloader import Eiffel
from custom_datasets.vpair_distractor_dataloader import VPAir_Distractor
# %%
@dataclass
class LocalArgs:
# Program arguments (dataset directories and wandb)
prog: ProgArgs = ProgArgs(use_wandb=False)
# BaseDataset arguments
bd_args: BaseDatasetArgs = base_dataset_args
# Dataset split for VPR (BaseDataset)
data_split: Literal["train", "test", "val"] = "test"
# Source image index
src_ind: int = 0
# Dataset for selecting (indexing) source image
src_in: Literal["database", "query"] = "database"
# Target image index
tgt_ind: int = 0
# Dataset for selecting (indexing) target image
tgt_in: Literal["database", "query"] = "query"
# Pixel location in source image (X = right, Y = down)
pix_loc: Tuple[int, int] = (555, 200)
# If True, show matplotlib plots (else don't show)
show_plts: bool = False
# Option to resize if images are of different sizes
assert_sizes: bool = True
# ----------------- Dino parameters -----------------
# Model type
model_type: Literal["dinov2_vits14", "dinov2_vitb14",
"dinov2_vitl14", "dinov2_vitg14"] = "dinov2_vits14"
"""
Model for Dino-v2 to use as the base model.
"""
# Layer for extracting Dino feature (descriptors)
desc_layer: int = 11
# For overriding the size of image (w, h)
force_size: Optional[Tuple[int, int]] = None
# %%
@torch.no_grad()
def get_sims(simg: np.ndarray, timg: np.ndarray,
pix_loc: Tuple[int, int], dino_model: str,
dino_layer: int, interp_mode = "nearest",
device = "cuda", assert_sizes=True) \
-> Dict[str, np.ndarray]:
"""
Get similarity maps for a given pixel location (of the source
image) in the target image.
- simg: Source image. Shape: [H, W, 3]
- timg: Target image. Shape: [H, W, 3]
- pix_loc: Pixel location in the source image. [H, W] value.
- dino_model: Model name for Dino-v2 model
- dino_layer: Layer to use for the descriptor extraction
- device: Torch device to use for computations (and model)
- assert_sizes: If True, the sizes are not changed (assert
error when different). If False and the sizes differ, then
the target image is resized to the source images shape.
Returns:
- sim_res: Dictionary containing similarities for different
facets in the Dino model. Facet is the key (str)
and value is the similarity map of shape [H, W, 1]
(0-1 float values - cosine similarity value)
"""
sim_res = dict() # Store results here
if simg.shape != timg.shape and not assert_sizes:
timg_r = cv.resize(timg, simg.shape[1::-1],
interpolation=cv.INTER_NEAREST)
timg = timg_r
assert simg.shape == timg.shape, "Images not of same shape"
h, w, three = simg.shape
tf = tvf.Compose([ # Transform numpy image to torch image
tvf.ToTensor(),
tvf.CenterCrop([(h//14)*14, (w//14)*14]),
# ImageNet mean and std
tvf.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
simg_pt = tf(simg)[None, ...].to(device)
timg_pt = tf(timg)[None, ...].to(device)
for facet in ["key", "query", "token", "value"]:
# Dino feature extractor
dino = DinoV2ExtractFeatures(dino_model, dino_layer, facet,
device=device)
# Extract features
res_s = dino(simg_pt).detach().cpu()
res_t = dino(timg_pt).detach().cpu()
del dino
# Process image (to original resolutions)
res_s_img = ein.rearrange(res_s[0],
"(p_h p_w) d -> d p_h p_w",
p_h=int(simg_pt.shape[-2]/14),
p_w=int(simg_pt.shape[-1]/14))[None, ...]
res_s_img = F.interpolate(res_s_img, mode='nearest',
size=(simg.shape[0], simg.shape[1]))
res_t_img = ein.rearrange(res_t[0],
"(p_h p_w) d -> d p_h p_w",
p_h=int(timg_pt.shape[-2]/14),
p_w=int(timg_pt.shape[-1]/14))[None, ...]
res_t_img = F.interpolate(res_t_img, mode='nearest',
size=(timg.shape[0], timg.shape[1]))
# Extract similarity map
s_pix = res_s_img[[0], ..., pix_loc[1], pix_loc[0]]
s_pix = ein.repeat(s_pix, "1 d -> 1 d h w",
h=res_s_img.shape[-2], w=res_s_img.shape[-1])
sim = F.cosine_similarity(res_t_img, s_pix, dim=1)
sim: np.ndarray = ein.rearrange(sim, "1 h w -> h w 1")\
.detach().cpu().numpy()
sim_res[facet] = sim
return sim_res
# %%
@torch.no_grad()
def main(largs: LocalArgs):
print(f"Arguments: {largs}")
seed_everything(42)
ds_dir = largs.prog.data_vg_dir
ds_name = largs.prog.vg_dataset_name
print(f"Dataset directory: {ds_dir}")
print(f"Dataset name: {ds_name}, split: {largs.data_split}")
bd_args, ds_split = largs.bd_args, largs.data_split
# Load dataset
if ds_name=="baidu_datasets":
vpr_ds = Baidu_Dataset(bd_args, ds_dir, ds_name, ds_split)
elif ds_name=="Oxford":
vpr_ds = Oxford(ds_dir)
elif ds_name=="gardens":
vpr_ds = Gardens(bd_args, ds_dir, ds_name, ds_split)
elif ds_name.startswith("Tartan_GNSS"):
vpr_ds = Aerial(bd_args, ds_dir, ds_name, ds_split)
elif ds_name.startswith("hawkins"): # Use only long_corridor
vpr_ds = Hawkins(bd_args, ds_dir,"hawkins_long_corridor",
ds_split)
elif ds_name=="VPAir":
vpr_ds = VPAir(bd_args, ds_dir, ds_name, ds_split)
vpr_distractor_ds = VPAir_Distractor(bd_args, ds_dir,
ds_name, ds_split)
elif ds_name=="laurel_caverns":
vpr_ds = Laurel(bd_args, ds_dir, ds_name, ds_split)
elif ds_name=="eiffel":
vpr_ds = Eiffel(bd_args, ds_dir, ds_name, ds_split)
else:
vpr_ds = BaseDataset(bd_args, ds_dir, ds_name, ds_split)
# Load images
s_ind = largs.src_ind
if largs.src_in == "query":
s_ind += vpr_ds.database_num
t_ind = largs.tgt_ind
if largs.tgt_in == "query":
t_ind += vpr_ds.database_num
src_img = vpr_ds.get_image_paths()[s_ind]
tgt_img = vpr_ds.get_image_paths()[t_ind]
pix_loc = largs.pix_loc # (W, H)
show_plts = largs.show_plts
dino_model = largs.model_type
dino_layer = largs.desc_layer
dst_dir = f"{largs.prog.cache_dir}/dino_v2_sim_facets/"\
f"{dino_model}_L{dino_layer}/{ds_name}"
sl = f"{largs.src_ind}{largs.src_in[0].upper()}"
tl = f"{largs.tgt_ind}{largs.tgt_in[0].upper()}"
save_fname = f"I{sl}-{tl}_Px{pix_loc[0]}_Py{pix_loc[1]}"
simg = Image.open(src_img)
timg = Image.open(tgt_img)
if largs.force_size is not None:
simg = simg.resize(largs.force_size)
timg = timg.resize(largs.force_size)
simg_np, timg_np = np.array(simg), np.array(timg)
if largs.assert_sizes:
assert simg_np.shape == timg_np.shape, "Shape mismatch"
if simg_np.shape != timg_np.shape:
print(f"Warn: Images not of same shape (S: {simg_np.shape},"\
f" T: {timg_np.shape}). Resizing target to source.")
timg_np = cv.resize(timg_np, simg_np.shape[1::-1],
interpolation=cv.INTER_NEAREST)
h, w, three = simg_np.shape
if not os.path.isdir(dst_dir):
os.makedirs(dst_dir)
print(f"Directory created: {dst_dir}")
else:
print(f"Destination directory '{dst_dir}' already exists!")
# Show image
if show_plts:
plt.figure()
plt.subplot(1, 2, 1)
plt.title("Source Image")
plt.imshow(simg_np)
plt.plot(*pix_loc, 'rx')
plt.axis('off')
plt.subplot(1, 2, 2)
plt.title("Target Image")
plt.imshow(timg_np)
plt.axis('off')
plt.tight_layout()
plt.show()
print("Getting similarities")
sims = get_sims(simg_np, timg_np, pix_loc, dino_model, dino_layer,
device=device, assert_sizes=largs.assert_sizes)
# Maximum locations in the max (mode = most recurrent)
print("Getting maximum locations")
key_max = mode(np.argwhere(sims["key"].max() == sims["key"]),
axis=0).mode[0, :2]
query_max = mode(np.argwhere(sims["query"].max()==sims["query"]),
axis=0).mode[0, :2]
value_max = mode(np.argwhere(sims["value"].max()==sims["value"]),
axis=0).mode[0, :2]
token_max = mode(np.argwhere(sims["token"].max()==sims["token"]),
axis=0).mode[0, :2]
print("Saving results")
nm = lambda x: (((x/2.0) + 0.5) * 255).astype(np.uint8)
# Marker properties
mp = {"ms": 20, "mew": 2, "mec": 'white', "alpha": 0.5}
# Colors for the markers
# cl = {
# "key": "#ffff00", # Yellow
# "query": "#66ff2e", # Green
# "value": "#0000ff", # Blue
# "token": "#ff0000", # Red
# "prompt": "#ff00ff" # Purple
# }
cl = { # We are using this for the paper
"key": "tab:pink",
"query": "tab:brown",
"value": "tab:orange",
"token": "tab:purple",
"prompt": "red"
}
# Figure
fig = plt.figure(figsize=(36, 6), dpi=500)
gs = fig.add_gridspec(1, 6)
ax1 = fig.add_subplot(gs[0, 0])
ax1.imshow(simg_np)
ax1.plot(*pix_loc, 'o', c=cl["prompt"], **mp)
ax1.axis('off')
ax2 = fig.add_subplot(gs[0, 1])
ax2.imshow(timg_np)
ax2.plot(key_max[1], key_max[0], 'o', label="key",
c=cl["key"], **mp)
ax2.plot(query_max[1], query_max[0], 'o', label="query",
c=cl["query"], **mp)
ax2.plot(value_max[1], value_max[0], 'o', label="value",
c=cl["value"], **mp)
ax2.plot(token_max[1], token_max[0], 'o', label="token",
c=cl["token"], **mp)
ax2.axis('off')
ax3 = fig.add_subplot(gs[0, 2])
ax3.set_title("Key")
ax3.imshow(nm(sims["key"]), vmin=0, vmax=255, cmap="jet")
ax3.axis('off')
ax4 = fig.add_subplot(gs[0, 3])
ax4.set_title("Query")
ax4.imshow(nm(sims["query"]), vmin=0, vmax=255, cmap="jet")
ax4.axis('off')
ax5 = fig.add_subplot(gs[0, 4])
ax5.set_title("Value")
ax5.imshow(nm(sims["value"]), vmin=0, vmax=255, cmap="jet")
ax5.axis('off')
ax6 = fig.add_subplot(gs[0, 5])
ax6.set_title("Token")
ax6.imshow(nm(sims["token"]), vmin=0, vmax=255, cmap="jet")
ax6.axis('off')
fig.legend(loc="lower center", ncol=4,
bbox_to_anchor=(0.1, 0.125, 0.8, 0.1), mode="expand")
fig.set_tight_layout(True)
# Save combined, source, target, key, query, value, and token imgs
fig.savefig(f"{dst_dir}/{save_fname}.png") # Main figure
extent = ax1.get_window_extent().transformed( # Source
fig.dpi_scale_trans.inverted())
fig.savefig(f"{dst_dir}/{save_fname}_source.png",
bbox_inches=extent)
extent = ax2.get_window_extent().transformed( # Target
fig.dpi_scale_trans.inverted())
fig.savefig(f"{dst_dir}/{save_fname}_target.png",
bbox_inches=extent)
extent = ax3.get_window_extent().transformed( # Key
fig.dpi_scale_trans.inverted())
fig.savefig(f"{dst_dir}/{save_fname}_key.png",
bbox_inches=extent)
extent = ax4.get_window_extent().transformed( # Query
fig.dpi_scale_trans.inverted())
fig.savefig(f"{dst_dir}/{save_fname}_query.png",
bbox_inches=extent)
extent = ax5.get_window_extent().transformed( # Value
fig.dpi_scale_trans.inverted())
fig.savefig(f"{dst_dir}/{save_fname}_value.png",
bbox_inches=extent)
extent = ax6.get_window_extent().transformed( # Token
fig.dpi_scale_trans.inverted())
fig.savefig(f"{dst_dir}/{save_fname}_token.png",
bbox_inches=extent)
# All results as joblib dump
res = {"source": simg_np, "target": timg_np, "similarities": sims,
"max": {"key": key_max, "query": query_max,
"value": value_max, "token": token_max},
"pix_loc": pix_loc}
joblib.dump(res, f"{dst_dir}/{save_fname}.gz")
if show_plts:
fig.show()
print(f"Saved in file: {dst_dir}/{save_fname}.[png,gz]")
if __name__ == "__main__" and ("ipykernel" not in sys.argv[0]):
largs = tyro.cli(LocalArgs, description=__doc__)
_start = time.time()
try:
main(largs)
except:
print("Unhandled exception")
traceback.print_exc()
finally:
print(f"Program ended in {time.time()-_start:.3f} seconds")
exit(0)
# %%