forked from AnyLoc/AnyLoc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdino_gp.py
297 lines (268 loc) · 10.3 KB
/
dino_gp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Apply global (max or average) pooling over Dino V1 descriptors
"""
Extract Dino v1 features from a facet of a layer and apply
global pooling (max or average) on them to get global features
of an image (for VPR).
"""
# %%
import os
import sys
from pathlib import Path
# Set the './../' from the script folder
dir_name = None
try:
dir_name = os.path.dirname(os.path.realpath(__file__))
except NameError:
print('WARN: __file__ not found, trying local')
dir_name = os.path.abspath('')
lib_path = os.path.realpath(f'{Path(dir_name).parent}')
# Add to path
if lib_path not in sys.path:
print(f'Adding library path: {lib_path} to PYTHONPATH')
sys.path.append(lib_path)
else:
print(f'Library path {lib_path} already in PYTHONPATH')
# %%
import torch
from torch.nn import functional as F
from dino_extractor import ViTExtractor
from PIL import Image
import numpy as np
import tyro
from dataclasses import dataclass, field
from utilities import VLAD, get_top_k_recall, seed_everything
import einops as ein
import wandb
import matplotlib.pyplot as plt
import time
import joblib
import traceback
from tqdm.auto import tqdm
from dvgl_benchmark.datasets_ws import BaseDataset
from configs import ProgArgs, prog_args, BaseDatasetArgs, \
base_dataset_args, device
from typing import Union, Literal, Tuple, List
from custom_datasets.baidu_dataloader import Baidu_Dataset
from custom_datasets.oxford_dataloader import Oxford
from custom_datasets.gardens import Gardens
# %%
@dataclass
class LocalArgs:
# Program arguments (dataset directories and wandb)
prog: ProgArgs = ProgArgs(wandb_proj="Dino-Descs",
wandb_group="Direct-Descs")
# BaseDataset arguments
bd_args: BaseDatasetArgs = base_dataset_args
# Experiment identifier (None = don't use)
exp_id: Union[str, None] = None
# Pooling type
pool_method: Literal["average", "max"] = "average"
# Dino parameters
model_type: Literal["dino_vits8", "dino_vits16", "dino_vitb8",
"dino_vitb16", "vit_small_patch8_224",
"vit_small_patch16_224", "vit_base_patch8_224",
"vit_base_patch16_224"] = "dino_vits8"
"""
Model for Dino to use as the base model.
"""
# Stride for ViT (extractor)
vit_stride: int = 4
# Down-scaling H, W resolution for images (before giving to Dino)
down_scale_res: Tuple[int, int] = (224, 298)
# Layer for extracting Dino feature (descriptors)
desc_layer: int = 11
# Facet for extracting descriptors
desc_facet: Literal["key", "query", "value", "token"] = "key"
# Apply log binning to the descriptor
desc_bin: bool = False
# Dataset split for VPR (BaseDataset)
data_split: Literal["train", "test", "val"] = "test"
# Sub-sample query images (RAM or VRAM constraints) (1 = off)
sub_sample_qu: int = 1
# Sub-sample database images (RAM or VRAM constraints) (1 = off)
sub_sample_db: int = 1
# Values for top-k (for monitoring)
top_k_vals: List[int] = field(default_factory=lambda:\
list(range(1, 21, 1)))
# Show a matplotlib plot for recalls
show_plot: bool = False
# %%
# ---------------- Functions ----------------
@torch.no_grad()
def build_gp_descs(largs: LocalArgs, vpr_ds: BaseDataset,
verbose: bool=True) \
-> Tuple[torch.Tensor, torch.Tensor]:
"""
Build globally pooled vectors for database and query images.
Pooling method taken from `largs.pool_method`
Parameters:
- largs: LocalArgs Local arguments for the file
- vpr_ds: BaseDataset The dataset containing database and
query images
- verbose: bool Prints progress if True
Returns:
- db_gpds: Pooled descriptors of database of shape
[n_db, d_dim]
- n_db: Number of database images
- d_dim: Descriptor dimensionality for the
(patch) features
- qu_gpds: Pooled descriptors of queries of shape
[n_qu, d_dim], 'n_qu' is num. of queries
"""
extractor = ViTExtractor(largs.model_type, largs.vit_stride,
device=device)
if verbose:
print("Dino model loaded")
def extract_patch_descriptors(indices):
patch_descs = []
for i in tqdm(indices, disable=not verbose):
img = vpr_ds[i][0]
img = ein.rearrange(img, "c h w -> 1 c h w").to(device)
img = F.interpolate(img, largs.down_scale_res)
desc = extractor.extract_descriptors(img,
layer=largs.desc_layer, facet=largs.desc_facet,
bin=largs.desc_bin) # [1, 1, num_descs, d_dim]
if largs.pool_method == "average":
desc = torch.mean(desc, dim=2)
elif largs.pool_method == "max":
desc = torch.max(desc, dim=2)[0]
else:
raise NotImplementedError(f"ID: {largs.pool_method}")
patch_descs.append(desc.squeeze().cpu())
patch_descs = torch.stack(patch_descs)
return patch_descs
# Get the database descriptors
num_db = vpr_ds.database_num
ds_len = len(vpr_ds)
assert ds_len > num_db, "Either no queries or length mismatch"
# Get pooled descriptors of the database
if verbose:
print("Building pooled descriptors for database...")
db_indices = np.arange(0, num_db, largs.sub_sample_db)
# All database descs (local descriptors): [n_db, n_d, d_dim]
db_gpds = extract_patch_descriptors(db_indices)
if verbose:
print(f"Pooled database descriptor shape: {db_gpds.shape}")
# Get pooled descriptors of the queries
if verbose:
print("Building pooled descriptors for queries...")
qu_indices = np.arange(num_db, ds_len, largs.sub_sample_qu)
full_qu = []
# Get global descriptors for queries
qu_gpds = extract_patch_descriptors(qu_indices)
if verbose:
print(f"Full query descriptor shape: {qu_gpds.shape}")
# Return VLADs
return db_gpds, qu_gpds
# %%
@torch.no_grad()
def main(largs: LocalArgs):
print(f"Arguments: {largs}")
seed_everything(42)
if largs.prog.use_wandb:
# Launch WandB
wandb_run = wandb.init(project=largs.prog.wandb_proj,
entity=largs.prog.wandb_entity, config=largs,
group=largs.prog.wandb_group,
name=largs.prog.wandb_run_name)
print(f"Initialized WandB run: {wandb_run.name}")
print("--------- Generating VLADs ---------")
ds_dir = largs.prog.data_vg_dir
ds_name = largs.prog.vg_dataset_name
print(f"Dataset directory: {ds_dir}")
print(f"Dataset name: {ds_name}, split: {largs.data_split}")
# Load dataset
if ds_name=="baidu_datasets":
vpr_ds = Baidu_Dataset(largs.bd_args, ds_dir, ds_name,
largs.data_split)
elif ds_name=="Oxford":
vpr_ds = Oxford(ds_dir)
elif ds_name=="Oxford_25m":
vpr_ds = Oxford(ds_dir, override_dist=25)
elif ds_name=="gardens":
vpr_ds = Gardens(largs.bd_args,ds_dir,ds_name,largs.data_split)
else:
vpr_ds = BaseDataset(largs.bd_args, ds_dir, ds_name,
largs.data_split)
db_gpds, qu_gpds = build_gp_descs(largs, vpr_ds)
print("--------- Generated pooled descriptors ---------")
print("----- Calculating recalls through top-k matching -----")
dists, indices, recalls = get_top_k_recall(largs.top_k_vals,
db_gpds, qu_gpds, vpr_ds.soft_positives_per_query,
sub_sample_db=largs.sub_sample_db,
sub_sample_qu=largs.sub_sample_qu)
print("------------ Recalls calculated ------------")
print("--------------------- Results ---------------------")
ts = time.strftime(f"%Y_%m_%d_%H_%M_%S")
caching_directory = largs.prog.cache_dir
results = {
"Model-Type": str(largs.model_type),
"Desc-Layer": str(largs.desc_layer),
"Desc-Facet": str(largs.desc_facet),
"Desc-Dim": str(db_gpds.shape[1]),
"Experiment-ID": str(largs.exp_id),
"DB-Name": str(ds_name),
"Num-DB": str(len(db_gpds)),
"Num-QU": str(len(qu_gpds)),
"Agg-Method": "GAP" if largs.pool_method == "average" \
else "GMP",
"Timestamp": str(ts)
}
print("Results: ")
for k in results:
print(f"- {k}: {results[k]}")
print("- Recalls: ")
for k in recalls:
results[f"R@{k}"] = recalls[k]
print(f" - R@{k}: {recalls[k]:.5f}")
if largs.show_plot:
plt.plot(recalls.keys(), recalls.values())
plt.ylim(0, 1)
plt.xticks(largs.top_k_vals)
plt.xlabel("top-k values")
plt.ylabel(r"% recall")
plt_title = "Recall curve"
if largs.exp_id is not None:
plt_title = f"{plt_title} - Exp {largs.exp_id}"
if largs.prog.use_wandb:
plt_title = f"{plt_title} - {wandb_run.name}"
plt.title(plt_title)
plt.show()
# Log to WandB
if largs.prog.use_wandb:
wandb.log(results)
for tk in recalls:
wandb.log({"Recall-All": recalls[tk]}, step=int(tk))
# Add retrievals
results["Qual-Dists"] = dists
results["Qual-Indices"] = indices
save_res_file = None
if largs.exp_id == True:
save_res_file = caching_directory
elif type(largs.exp_id) == str:
save_res_file = f"{caching_directory}/experiments/"\
f"{largs.exp_id}"
if save_res_file is not None:
if not os.path.isdir(save_res_file):
os.makedirs(save_res_file)
save_res_file = f"{save_res_file}/results_{ts}.gz"
print(f"Saving result in: {save_res_file}")
joblib.dump(results, save_res_file)
else:
print("Not saving results")
if largs.prog.use_wandb:
wandb.finish()
print("--------------------- END ---------------------")
# %%
if __name__ == "__main__" and ("ipykernel" not in sys.argv[0]):
largs = tyro.cli(LocalArgs, description=__doc__)
_start = time.time()
try:
main(largs)
except:
print("Unhandled exception")
traceback.print_exc()
finally:
print(f"Program ended in {time.time()-_start:.3f} seconds")
exit(0)
# %%