forked from AnyLoc/AnyLoc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdino_global_vpr.py
324 lines (297 loc) · 11.8 KB
/
dino_global_vpr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Perform VPR on Dino descriptors
"""
Use the CLS token (facet = "token") of the last layer to be the
global descriptor for the image. Use it for VPR.
"""
# %%
import os
import sys
from pathlib import Path
# Set the './../' from the script folder
dir_name = None
try:
dir_name = os.path.dirname(os.path.realpath(__file__))
except NameError:
print('WARN: __file__ not found, trying local')
dir_name = os.path.abspath('')
lib_path = os.path.realpath(f'{Path(dir_name).parent}')
# Add to path
if lib_path not in sys.path:
print(f'Adding library path: {lib_path} to PYTHONPATH')
sys.path.append(lib_path)
else:
print(f'Library path {lib_path} already in PYTHONPATH')
# %%
import torch
from torch.nn import functional as F
from dino_extractor import ViTExtractor
from PIL import Image
import numpy as np
import tyro
from dataclasses import dataclass, field
from utilities import VLAD, get_top_k_recall, seed_everything
import einops as ein
import wandb
import matplotlib.pyplot as plt
import time
import joblib
import traceback
from tqdm.auto import tqdm
from dvgl_benchmark.datasets_ws import BaseDataset
from configs import ProgArgs, prog_args, BaseDatasetArgs, \
base_dataset_args, device
from typing import Union, Literal, Tuple, List
from custom_datasets.baidu_dataloader import Baidu_Dataset
from custom_datasets.oxford_dataloader import Oxford
from custom_datasets.gardens import Gardens
from custom_datasets.aerial_dataloader import Aerial
from custom_datasets.hawkins_dataloader import Hawkins
from custom_datasets.vpair_dataloader import VPAir
from custom_datasets.vpair_distractor_dataloader import VPAir_Distractor
from custom_datasets.laurel_dataloader import Laurel
from custom_datasets.eiffel_dataloader import Eiffel
# %%
@dataclass
class LocalArgs:
# Program arguments (dataset directories and wandb)
prog: ProgArgs = ProgArgs(wandb_proj="Dino-Descs",
wandb_group="Direct-Descs")
# BaseDataset arguments
bd_args: BaseDatasetArgs = base_dataset_args
# Experiment identifier (None = don't use)
exp_id: Union[str, None] = None
# Dino parameters
model_type: Literal["dino_vits8", "dino_vits16", "dino_vitb8",
"dino_vitb16", "vit_small_patch8_224",
"vit_small_patch16_224", "vit_base_patch8_224",
"vit_base_patch16_224"] = "dino_vits8"
"""
Model for Dino to use as the base model.
"""
# Stride for ViT (extractor)
vit_stride: int = 4
# Down-scaling H, W resolution for images (before giving to Dino)
down_scale_res: Tuple[int, int] = (224, 298)
# Dataset split for VPR (BaseDataset)
data_split: Literal["train", "test", "val"] = "test"
# Apply log binning to the descriptor
desc_bin: bool = False
# Sub-sample query images (RAM or VRAM constraints) (1 = off)
sub_sample_qu: int = 1
# Sub-sample database images (RAM or VRAM constraints) (1 = off)
sub_sample_db: int = 1
# Values for top-k (for monitoring)
top_k_vals: List[int] = field(default_factory=lambda:\
list(range(1, 21, 1)))
# Similarity search
faiss_method: Literal["l2", "cosine"] = "cosine"
"""
Method (base index) to use for faiss nearest neighbor search.
Find the complete table at [1].
- "l2": The euclidean distances are used.
- "cosine": The cosine distances (dot product) are used.
Note that `get_top_k_recall` normalizes the descriptors given
as input.
[1]: https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
"""
# Show a matplotlib plot for recalls
show_plot: bool = False
# %%
@torch.no_grad()
def build_cache(largs: LocalArgs, vpr_ds: BaseDataset,
verbose: bool=True, vpr_distractor: BaseDataset=None) \
-> Tuple[torch.Tensor, torch.Tensor]:
"""
Build global descriptors for database and query images.
Parameters:
- largs: LocalArgs Local arguments for the file
- vpr_ds: BaseDataset The dataset containing database and
query images
- verbose: bool Prints progress if True
Returns:
- db_descs: Database image descriptors of shape [N_db, m_d]
- N_db: Number of database images
- m_d: Dimensionality of descriptor (last
layer, facet token, CLS). Depends on the
model.
- qu_descs: Query image descriptors of shape [N_qu, m_d]
"""
extractor = ViTExtractor(largs.model_type, largs.vit_stride,
device=device)
def extract_gd(indices, use_distractor: bool=False):
full_descs = []
for i in tqdm(indices, disable=not verbose):
if use_distractor:
img = vpr_distractor[i][0]
else:
img = vpr_ds[i][0]
img = ein.rearrange(img, "c h w -> 1 c h w").to(device)
img = F.interpolate(img, largs.down_scale_res)
desc = extractor.extract_descriptors(img,
layer=11, facet="token", bin=largs.desc_bin,
include_cls=True) # [1, 1, 1 + n_d, d_dim]
full_descs.append(desc[0, 0, [0]]) # n_d = 55 * 73
full_descs = torch.cat(full_descs, dim=0)
return full_descs
# Get the database descriptors
num_db = vpr_ds.database_num
ds_len = len(vpr_ds)
assert ds_len > num_db, "Either no queries or length mismatch"
db_indices = np.arange(0, num_db, largs.sub_sample_db)
full_db_descs = extract_gd(db_indices)
if verbose:
print(f"Database descriptors shape: {full_db_descs.shape}")
# Get query descriptors
qu_indices = np.arange(num_db, ds_len, largs.sub_sample_qu)
full_qu_descs = extract_gd(qu_indices)
if verbose:
print(f"Query descriptors shape: {full_qu_descs.shape}")
# Get database distractor descriptors
if vpr_distractor is not None:
num_db_distractor = vpr_distractor.database_num
if verbose:
print("Extracting global descriptors for vpair distractors...")
try:
db_dis_indices = np.arange(0, num_db_distractor, largs.sub_sample_db)
full_db_descs_dis = extract_gd(db_dis_indices, use_distractor=True)
full_db_descs = torch.cat((full_db_descs, full_db_descs_dis), dim=0)
if verbose:
print(f"Database with distractors shape: {full_db_descs.shape}")
except RuntimeError as exc:
print(f"Runtime error: {exc}")
print("Not using vpair distractors")
return full_db_descs, full_qu_descs
# %%
@torch.no_grad()
def main(largs: LocalArgs):
"""
Main function
"""
print(f"Arguments: {largs}")
seed_everything()
if largs.prog.use_wandb:
# Launch WandB
wandb_run = wandb.init(project=largs.prog.wandb_proj,
entity=largs.prog.wandb_entity, config=largs,
group=largs.prog.wandb_group,
name=largs.prog.wandb_run_name)
print(f"Initialized WandB run: {wandb_run.name}")
print("------------ Loading dataset ------------")
ds_dir = largs.prog.data_vg_dir
ds_name = largs.prog.vg_dataset_name
print(f"Dataset directory: {ds_dir}")
print(f"Dataset name: {ds_name}")
print(f"Dataset split: {largs.data_split}")
# Load dataset
if ds_name=="baidu_datasets":
vpr_ds = Baidu_Dataset(largs.bd_args, ds_dir, ds_name,
largs.data_split)
elif ds_name=="Oxford":
vpr_ds = Oxford(ds_dir)
elif ds_name=="Oxford_25m":
vpr_ds = Oxford(ds_dir, override_dist=25)
elif ds_name=="gardens":
vpr_ds = Gardens(largs.bd_args,ds_dir,ds_name,largs.data_split)
elif ds_name.startswith("Tartan_GNSS"):
vpr_ds = Aerial(largs.bd_args,ds_dir,ds_name,largs.data_split)
elif ds_name.startswith("hawkins"): # Use only long_corridor
vpr_ds = Hawkins(largs.bd_args,ds_dir,"hawkins_long_corridor",largs.data_split)
elif ds_name=="VPAir":
vpr_ds = VPAir(largs.bd_args,ds_dir,ds_name,largs.data_split)
vpr_distractor_ds = VPAir_Distractor(largs.bd_args,ds_dir,ds_name,largs.data_split)
elif ds_name=="laurel_caverns":
vpr_ds = Laurel(largs.bd_args,ds_dir,ds_name,largs.data_split)
elif ds_name=="eiffel":
vpr_ds = Eiffel(largs.bd_args,ds_dir,ds_name,largs.data_split)
else:
vpr_ds = BaseDataset(largs.bd_args, ds_dir, ds_name,
largs.data_split)
print("------------ Dataset loaded ------------")
print("------- Generating global descriptors -------")
if ds_name == "VPAir":
db_descs, qu_descs = build_cache(largs, vpr_ds, vpr_distractor=vpr_distractor_ds)
else:
db_descs, qu_descs = build_cache(largs, vpr_ds)
print("------- Global descriptors generated -------")
print("----------- FAISS Search started -----------")
# u = True if device.type == "cuda" else False
u = False # TODO: debugging this
dists, indices, recalls = get_top_k_recall(largs.top_k_vals,
db_descs.cpu(), qu_descs.cpu(), vpr_ds.get_positives(),
method=largs.faiss_method, use_gpu=u,
sub_sample_db=largs.sub_sample_db,
sub_sample_qu=largs.sub_sample_qu)
print("------------ FAISS Search ended ------------")
ts = time.strftime(f"%Y_%m_%d_%H_%M_%S")
caching_directory = largs.prog.cache_dir
results = {
"Model-Type": str(largs.model_type),
"DB-Name": str(largs.prog.vg_dataset_name),
"Timestamp": str(ts),
"FAISS-metric": str(largs.faiss_method),
"Agg-Method": "Global",
"Desc-Dim": str(db_descs.shape[1])
}
print("Results:")
for k in results:
print(f"- {k}: {results[k]}")
print("- Recalls:")
for tk in recalls.keys():
results[f"R@{tk}"] = recalls[tk]
print(f" - R@{tk}: {recalls[tk]:.5f}")
if largs.show_plot:
plt.plot(recalls.keys(), recalls.values())
plt.ylim(0, 1)
plt.xticks(largs.top_k_vals)
plt.xlabel("top-k values")
plt.ylabel(r"% recall")
plt_title = "Recall curve"
if largs.exp_id is not None:
plt_title = f"{plt_title} - Exp {largs.exp_id}"
if largs.prog.use_wandb:
plt_title = f"{plt_title} - {wandb_run.name}"
plt.title(plt_title)
plt.show()
# Log to WandB
if largs.prog.use_wandb:
wandb.log(results)
for tk in recalls:
wandb.log({"Recall-All": recalls[tk]}, step=int(tk))
# Add retrievals
results["Qual-Dists"] = dists
results["Qual-Indices"] = indices
save_res_file = None
if largs.exp_id == True:
save_res_file = caching_directory
elif type(largs.exp_id) == str:
save_res_file = f"{caching_directory}/experiments/"\
f"{largs.exp_id}"
if save_res_file is not None:
if not os.path.isdir(save_res_file):
os.makedirs(save_res_file)
save_res_file = f"{save_res_file}/results_{ts}.gz"
print(f"Saving result in: {save_res_file}")
joblib.dump(results, save_res_file)
else:
print("Not saving results")
print("--------------------- END ---------------------")
# %%
if __name__ == "__main__" and (not "ipykernel" in sys.argv[0]):
largs = tyro.cli(LocalArgs)
_start = time.time()
try:
main(largs)
except (Exception, SystemExit) as exc:
print(f"Exception: {exc}")
if str(exc) == "0":
print("[INFO]: Exit is safe")
else:
print("[ERROR]: Exit is not safe")
traceback.print_exc()
except:
print("Unhandled error")
traceback.print_exc()
finally:
print(f"Program ended in {time.time()-_start:.3f} seconds")
exit(0)
# %%