-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNaiveBayes.py
222 lines (174 loc) · 8.68 KB
/
NaiveBayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 25 14:56:23 2011
@author: juherask
"""
import re
from operator import mul
from collections import defaultdict
## Just few helper functions ##
class NaiveBayes:
def __init__(self, prior_per_teach=True):
""" Create new Naive Bayes Classifier.
if prior_per_teach==True,
only the teach method *calls* are considered to label prior
if prior_per_teach==False,
the tokens are considered to label prior
"""
self._prior_per_teach = prior_per_teach
self._teachTotal=0
self._teachesPerLabel=defaultdict(int)
self._countsTotal=0
self._countsPerLabel=defaultdict(int)
self._countsPerTokenAndLabel=defaultdict(lambda : defaultdict(int))
self._countsPerToken=defaultdict(int)
def teach_tokens(self, label, tokens):
""" Teach the Naive Bayes Classifier that the label (aka. class)
appears together with given tokens (aka. features, inputs).
Your teaching should follow the distribution of instances. That is
if 'label1' is present 1/3 of the time in real data, then 1/3 of the
teaching should be done on it. This is to get the prior probability
for the labels right.
The tokens on the other hand should be a good reprsentative sample
of the true distribution. All the tokens are independent, that is
calling (if prior_per_teach=False)
nb.teach_tokens("c1", ["a","b","c","d"])
vs.
nb.teach_tokens("c1", ["a","b"])
nb.teach_tokens("c1", ["c","d"])
produce equal classifier.
"""
# For label probability
self._teachTotal+=1
self._teachesPerLabel[label]+=1
for token in tokens:
# For label probability
self._countsTotal+=1
self._countsPerLabel[label]+=1
# For token in label probability
self._countsPerToken[token]+=1
self._countsPerTokenAndLabel[token][label]+=1
def get_labels(self):
""" Get the list of labels (classes) of this Naive Bayes Classifier.
"""
return self._countsPerLabel
def get_probability(self, forLabel, withTokens):
""" Returns the Naive Bayesian probablilty
for a specific label.
See get_probabilites() for more details.
"""
results = self.get_probabilites(withTokens)
for prob, label in results:
if label==forLabel:
return prob
def get_probabilites(self, withTokens):
""" Returns the Naive Bayesian probablilty
for each label stating the possibility that tokens
appear for that label.
Returned as list of pairs [ (float(probability1), str(label1))...]
p(C|X) = p(C) p(X|C) / p(X), where
P(C) is the prior probability of any input to belong to a class with
any input, and p(X|C) is the likelyhood of the input X given class C.
if assumed p(X_1)=p(X_2) forall X_i, we can simplify to
q(C|X) = p(C) p(X|C), which can be compared
"""
probs = []
normsum = 0
for label in self.get_labels():
# Find the label probability, that is p(C)
if self._prior_per_teach:
labelProb = float(self._teachesPerLabel[label])/self._teachTotal
else:
labelProb = float(self._countsPerLabel[label])/self._countsTotal
# Find the likelyhood of tokens for this label that is p(x_i|C)
labelProbabilities = []
activeTokens = []
for token in withTokens:
if token in self._countsPerTokenAndLabel:
#print "laplacian", token, label, lprob
matches = 0
if label in self._countsPerTokenAndLabel[token]:
matches = self._countsPerTokenAndLabel[token][label]
#print "calcd", token, label, lprob
# Probability with Laplacian correction
number_of_different_tokens = len(self._countsPerToken)
tokens_with_label = self._countsPerLabel[label]
lprob = (1.0+matches)/(number_of_different_tokens+tokens_with_label)
labelProbabilities.append(lprob)
activeTokens.append(token)
# reduce(mul,lst,1.0) does a product over independet assumption
# for p(x_i|C) to get p(X|C)
labelprob = labelProb*reduce(mul, labelProbabilities, 1.0)
#print "'%s' with %s :" % (label, str(withTokens))
#print "p(C)=%.2f, p(X|C)=%.4f -> p(C|X)=%.4f" % (labelProb, reduce(mul, labelProbabilities, 1.0), labelprob)
#print
probs.append( (labelprob , label) )
normsum+=labelprob
# Sort and normalize
probs.sort(reverse=True)
nprobs = []
for prob,label in probs:
nprobs.append( (prob/normsum, label) )
return nprobs
def tokenize_en(s):
"""Simple english word tokenizer
"""
previous = None
for word in (re.sub(r'\W+', ' ', s.lower())).split():
# Skip word if preceeded by not
if word not in ["i", "am", "has", "a", "and", "an", "is", "in", "the", "have"]:
word = word.rstrip('s')
if previous == "not" and previous == "no":
yield ' '.join(previous,word)
else:
yield word
previous = word
def test():
""" Code that test the basic operation of the NaiveBayes classifier
"""
# Teach
nbc = NaiveBayes()
for i in range(1):
nbc.teach_tokens("A cat", list(tokenize_en("has four legs")))
nbc.teach_tokens("A cat", list(tokenize_en("has pointy ears")))
nbc.teach_tokens("A cat", list(tokenize_en("has fur and long tail")))
nbc.teach_tokens("A cat", list(tokenize_en("is domesticated")))
nbc.teach_tokens("A cat", list(tokenize_en("says meow.")))
nbc.teach_tokens("A pig", list(tokenize_en("has four legs")))
nbc.teach_tokens("A pig", list(tokenize_en("has floppy ears")))
nbc.teach_tokens("A pig", list(tokenize_en("is domesticated")))
nbc.teach_tokens("A pig", list(tokenize_en("has squiggly tail")))
nbc.teach_tokens("A mouse", list(tokenize_en("has four legs")))
nbc.teach_tokens("A mouse", list(tokenize_en("has round ears")))
nbc.teach_tokens("A mouse", list(tokenize_en("is small")))
nbc.teach_tokens("A mouse", list(tokenize_en("has fur and a long tail")))
nbc.teach_tokens("A dog", list(tokenize_en("has four legs")))
nbc.teach_tokens("A dog", list(tokenize_en("has fur")))
nbc.teach_tokens("A dog", list(tokenize_en("is domesticated")))
nbc.teach_tokens("A dog", list(tokenize_en("barks")))
nbc.teach_tokens("A monkey", list(tokenize_en("has two legs")))
nbc.teach_tokens("A monkey", list(tokenize_en("has fur")))
nbc.teach_tokens("A monkey", list(tokenize_en("is intelligent")))
nbc.teach_tokens("A monkey", list(tokenize_en( "lives in trees")))
nbc.teach_tokens("A human", list(tokenize_en("speaks")))
nbc.teach_tokens("A human", list(tokenize_en("is intelligent")))
nbc.teach_tokens("A human", list(tokenize_en("walks on two feet")))
nbc.teach_tokens("A human", list(tokenize_en("does not have tail")))
nbc.teach_tokens("A human", list(tokenize_en("does not have fur")))
# Test
q_et_a = [
("What is an creature that lives in trees and has fur?", "A monkey"),
("What has fur, sometimes barks, and has four legs?", "A dog"),
("I speak, I walk, I wear clothing. What am I?", "A human"),
]
for q, a in q_et_a:
t = list(tokenize_en(q))
print(q)
probs = nbc.get_probabilites(t)
assert(probs[0][1] == a)
for prob, creature in probs:
print "%s with probability of %i %%" % \
(creature, int(prob*100))
print
if __name__ == '__main__':
test()