Skip to content

Latest commit

 

History

History
132 lines (123 loc) · 25.3 KB

awesome_llm_data.md

File metadata and controls

132 lines (123 loc) · 25.3 KB

Awesome LLM Data Awesome

Welcome to the "Awesome List" for LLM-Data, a continually updated resource tailored for the open-source community. This compilation features cutting-edge research, insightful articles, datasets, tools, and frameworks focusing on the nuances of data preparation, processing, enhancement, evaluation and understanding for Large Language Models (LLMs).

We provide a tag-based categorization to help readers easy diving into the myriad of materials, promoting an intuitive understanding of each entry's key focus areas. Soon we will provide a dynamic table of contents to help readers more easily navigate through the materials with features such as search, filter, and sort.

Explore, contribute, and stay up to date with the evolving landscape of LLM-Data. Please feel free to pull requests or open issues to improve this list and add more related resources!

Tags for the Materials

Material Type

  • preprint_publication # e.g., arXiv'2305 indicates 2023-05 announced
  • conference_or_journal_paper # e.g., ACL'23, NeurIPS'23, ...
  • Blog_Post
  • Tool_Resource
  • Dataset_Release
  • Framework_Development
  • Competition_Challenge

Dataset and Data Type

  • Data_Usage_Pretrain
  • Data_Usage_FineTune
  • Data_Usage_Evaluation
  • Data_Domain_Text
  • Data_Domain_Multimodal
  • Data_Domain_Vision
  • Data_Domain_Audio
  • Data_Domain_Video
  • Data_Domain_Code
  • Data_Domain_Web
  • Data_Domain_Prompt

Data Understanding

  • Data_Quality
  • Data_Diversity
  • Data_Quantity
  • Data_Contamination
  • Data_Bias
  • Data_Toxicity
  • Privacy_Risks
  • Data_Generalization

Data Management

  • Data_Processing_Enhancement
  • Data_Processing_Mixture
  • Data_Processing_Denoising
  • Data_Processing_Deduplication
  • Data_Processing_Selection
  • Data_Curation_RuleBased
  • Data_Curation_ModelBased
  • Data_Alignment
  • Data_Scaling

Material List

Material Full Name Tags
RedPajama-v2 Blog_Post, Data_Usage_Pretrain, Data_Domain_Text, Data_Processing_Deduplication, Data_Quality, Data_Diversity
The RefinedWeb Dataset for Falcon LLM NeurIPS_Dataset_and_Benchmark_Track'2023, Data_Usage_Pretrain, Data_Domain_Text, Data_Processing_Enhancement, Data_Processing_Deduplication
The Pile: An 800GB Dataset of Diverse Text for Language Modeling arXiv'2101, Data_Usage_Pretrain, Data_Domain_Text, Data_Quality, Data_Diversity, Data_Quantity
Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ Tasks EMNLP'22, Data_Usage_Evaluation, Data_Domain_Text, Data_Alignment, Data_Generalization
LAION-5B: An open large-scale dataset for training next generation image-text models NeurIPS'22, Data_Usage_Pretrain, Data_Domain_Multimodal, Data_Processing_Enhancement, Data_Quantity
Multimodal C4: An Open, Billion-scale Corpus of Images Interleaved with Text NeurIPS'23, Data_Usage_Pretrain, Data_Domain_Multimodal, Data_Processing_Mixture, Data_Quantity, Data_Diversity
Data Filtering Networks arXiv'2309, Data_Usage_Pretrain, Data_Domain_Text, Data_Processing_Selection, Data_Quality
SIEVE: Multimodal Dataset Pruning Using Image Captioning Models arXiv'2310, Data_Usage_Pretrain, Data_Domain_Multimodal, Data_Processing_Denoising, Data_Quality
SpeechGPT: Empowering Large Language Models with Intrinsic Cross-Modal Conversational Abilities arXiv'2305, Framework_Development, Data_Usage_FineTune, Data_Domain_Audio, Data_Alignment, Data_Generalization
Listen, Think, and Understand arXiv'2305, Framework_Development, Data_Usage_FineTune, Data_Domain_Audio, Data_Diversity, Data_Generalization
AudioCaps: Generating Captions for Audios in The Wild NAACL'19, Data_Usage_FineTune, Data_Domain_Audio, Data_Processing_Enhancement, Data_Diversity
WavCaps: A ChatGPT-Assisted Weakly-Labelled Audio Captioning Dataset for Audio-Language Multimodal Research arXiv'2303, Data_Usage_FineTune, Data_Domain_Audio, Data_Processing_Denoising, Data_Generalization
Improving Multimodal Datasets with Image Captioning NeurIPS'23, Data_Usage_Pretrain, Data_Domain_Multimodal, Data_Curation_ModelBased, Data_Processing_Enhancement, Data_Quality
Demystifying CLIP Data arXiv'2309, Framework_Development, Data_Usage_Pretrain, Data_Domain_Vision, Data_Curation_RuleBased, Data_Quantity
The Flan Collection: Designing Data and Methods for Effective Instruction Tuning ICML'23, Data_Usage_FineTune, Data_Domain_Text, Data_Alignment, Data_Generalization
Data-Juicer: A One-Stop Data Processing System for Large Language Models SIGMOD'24, Tool_Resource, Framework_Development Data_Usage_Pretrain, Data_Usage_FineTune, Data_Domain_Text, Data_Processing_Enhancement, Data_Scaling, Data_Quality
From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning NAACL'24, Data_Usage_FineTune, Data_Domain_Text, Data_Alignment, Data_Quality, Data_Generalization
InternVid: A Large-scale Video-Text Dataset for Multimodal Understanding and Generation ICLR'24, Data_Usage_Pretrain, Data_Domain_Video, Data_Domain_Multimodal, Data_Quality, Data_Curation_ModelBased
What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning ICLR'24, Data_Usage_FineTune, Data_Domain_Text, Data_Alignment, Data_Quality, Data_Diversity
Alpagasus: Training a Better Alpaca Model with Fewer Data ICLR'24, Data_Usage_FineTune, Data_Domain_Text, Data_Alignment, Data_Quality
WaveCoder: Widespread And Versatile Enhanced Instruction Tuning with Refined Data Generation arXiv'2312, Framework_Development, Data_Usage_FineTune, Data_Domain_Code, Data_Alignment, Data_Generalization
IDEAL: Influence-Driven Selective Annotations Empower In-Context Learners in Large Language Models ICLR'24, Tool_Resource, Data_Usage_FineTune, Data_Domain_Text, Data_Alignment, Data_Generalization
LoBaSS: Gauging Learnability in Supervised Fine-tuning Data arXiv'2310, Tool_Resource, Data_Usage_FineTune, Data_Domain_Text, Data_Scaling, Data_Quality
Dynosaur: A Dynamic Growth Paradigm for Instruction-Tuning Data Curation EMNLP'23, Framework_Development, Data_Usage_FineTune, Data_Domain_Text, Data_Processing_Deduplication, Data_Alignment
Superfiltering: Weak-to-Strong Data Filtering for Fast Instruction-Tuning arXiv'2402, Tool_Resource, Data_Usage_FineTune, Data_Domain_Text, Data_Scaling, Data_Generalization
Rethinking the Instruction Quality: LIFT is What You Need arXiv'2312, Data_Usage_FineTune, Data_Domain_Text, Data_Alignment, Data_Quality
Scaling Laws and Interpretability of Learning from Repeated Data arXiv'2205, Data_Usage_Pretrain, Data_Domain_Text, Data_Contamination, Data_Bias
Scaling Data-Constrained Language Models NeurIPS'24, Data_Usage_Pretrain, Data_Domain_Text, Data_Scaling, Data_Quantity
To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis NeurIPS'24, Data_Usage_Pretrain, Data_Domain_Text, Data_Processing_Deduplication, Data_Generalization
D4: Improving llm pretraining via document de-duplication and diversification NeurIPS'24, Data_Usage_Pretrain, Data_Domain_Text, Data_Curation_RuleBased, Data_Generalization
Deduplicating training data makes language models better ACL'22, Data_Usage_Pretrain, Data_Domain_Text, Data_Diversity, Data_Quality
SemDeDup: Data-efficient learning at web-scale through semantic deduplication arXiv'2303, Data_Usage_Pretrain, Data_Domain_Text, Data_Processing_Deduplication, Data_Quantity
How Much Do Language Models Copy From Their Training Data? Evaluating Linguistic Novelty in Text Generation Using RAVEN TACL'23, Data_Usage_Pretrain, Data_Domain_Text, Data_Curation_ModelBased, Data_Generalization
Deduplicating Training Data Mitigates Privacy Risks in Language Models ICML'22, Data_Usage_Pretrain, Data_Domain_Text, Privacy_Risks, Data_Processing_Deduplication
PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts ACL'22, Tool_Resource, Data_Usage_FineTune, Data_Domain_Prompt, Data_Processing_Enhancement
A Pretrainer's Guide to Training Data: Measuring the Effects of Data Age, Domain Coverage, Quality, & Toxicity arXiv'2305, Data_Usage_Pretrain, Data_Domain_Text, Data_Toxicity, Data_Bias, Data_Diversity
When less is more: Investigating Data Pruning for Pretraining LLMs at Scale arXiv'2309, Data_Usage_Pretrain, Data_Domain_Text, Data_Processing_Selection, Data_Quality
Exploring the Impact of Instruction Data Scaling on Large Language Models: An Empirical Study on Real-World Use Cases arXiv'2303, Data_Usage_FineTune, Data_Domain_Text, Data_Scaling, Data_Alignment
Investigating data contamination in modern benchmarks for large language models arXiv'2311, Data_Usage_Evaluation, Data_Domain_Text, Data_Contamination, Data_Bias
Textbooks Are All You Need arXiv'2306, Data_Usage_FineTune, Data_Domain_Code, Data_Processing_Enhancement, Data_Quantity
Textbooks are all you need ii: phi-1.5 technical report arXiv'2309, Data_Usage_FineTune, Data_Domain_Code, Data_Generalization, Data_Diversity
Quality at a glance: An audit of web-crawled multilingual datasets TACL'22, Data_Usage_Pretrain, Data_Domain_Multimodal, Data_Quality, Data_Diversity
DataComp: In search of the next generation of multimodal datasets NeurIPS_Dataset_and_Benchmark_Track'2023, Competition_Challenge, Data_Usage_Pretrain, Data_Domain_Multimodal, Data_Processing_Enhancement
The MiniPile Challenge for Data-Efficient Language Models arXiv'2304, Competition_Challenge, Data_Usage_Pretrain, Data_Domain_Text, Data_Efficiency, Data_Diversity
Contamination Detector for LLMs Evaluation Tool_Resource, Data_Usage_Pretrain, Data_Domain_Text, Data_Contamination
Do Models Really Learn to Follow Instructions? An Empirical Study of Instruction Tuning ACL'23, Data_Usage_FineTune, Data_Domain_Text, Data_Alignment, Data_Quality, Data_Bias
Did You Read the Instructions? Rethinking the Effectiveness of Task Definitions in Instruction Learning ACL'23, Data_Usage_FineTune, Data_Domain_Text, Data_Alignment, Data_Quality, Data_Generalization
Exploring Format Consistency for Instruction Tuning arXiv'2307, Data_Usage_FineTune, Data_Domain_Text, Data_Alignment, Data_Processing_Enhancement, Data_Generalization
Data-centric Artificial Intelligence: A Survey arXiv'2303, Data_Usage_Pretrain, Data_Domain_Text, Data_Scaling, Data_Quality, Data_Diversity
Data Management For Large Language Models: A Survey arXiv'2312, Data_Usage_Pretrain, Data_Domain_Text, Data_Scaling, Data_Quality, Data_Generalization
awesome-instruction-dataset Repo, Data_Usage_FineTune, Data_Domain_Text, Data_Alignment, Data_Scaling, Data_Generalization
Koala: An Index for Quantifying Overlaps with Pre-training Corpora EMNLP'23 demo, Tool_Resource, Data_Usage_Pretrain, Data_Domain_Text, Data_Contamination
Detectig Pretraining Data from Large Language Models arXiv'2310, Data_Usage_Pretrain, Data_Domain_Text, Data_Contamination, Data_Quantity
Stop Uploading Test Data in Plain Text: Practical Strategies for Mitigating Data Contamination by Evaluation Benchmarks EMNLP'23, Data_Usage_Evaluation, Data_Domain_Text, Data_Contamination, Data_Quality
SlimPajama-DC: Understanding Data Combinations for LLM Training arXiv'2309, Data_Usage_Pretrain, Data_Domain_Text, Data_Processing_Deduplication, Data_Diversity, Data_Scaling
CodeGen2: Lessons for Training LLMs on Programming and Natural Languages ICLR'23, Data_Usage_FineTune, Data_Domain_Code, Data_Processing_Mixture, Data_Generalization
DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining NeurIPS'24, Data_Usage_Pretrain, Data_Domain_Text, Data_Processing_Enhancement, Data_Domain_Multimodal, Data_Scaling
Oasis: Data Curation and Assessment System for Pretraining of Large Language Models arXiv'2311, Tool_Resource, Data_Usage_Pretrain, Data_Processing_Deduplication, Data_Quality, Data_Processing_Selection
Dynamics of Instruction Tuning: Each Ability of Large Language Models Has Its Own Growth Pace arXiv'2310, Data_Usage_FineTune, Data_Domain_Text, Data_Processing_Enhancement, Data_Generalization, Data_Diversity
How abilities in large language models are affected by supervised fine-tuning data composition arXiv'2310, Data_Usage_FineTune, Data_Domain_Text, Data_Scaling, Data_Generalization, Data_Processing_Selection
Scaling Relationship on Learning Mathematical Reasoning with Large Language Models arXiv'2308, Data_Usage_FineTune, Data_Domain_Text, Data_Processing_Deduplication, Data_Quantity, Data_Generalization
Data-Centric Financial Large Language Models arXiv'2310, Data_Usage_FineTune, Data_Domain_Text, Data_Quantity, Data_Processing_Enhancement
Ziya2: Data-centric Learning is All LLMs Need arXiv'2311, Data_Usage_Pretrain, Data_Domain_Text, Data_Domain_Code, Data_Quality
Scaling Laws for Neural Language Models arXiv'2001, Data_Usage_Pretrain, Data_Domain_Text, Data_Quantity, Data_Scaling
Scaling Laws for Autoregressive Generative Modeling arXiv'2010, Data_Usage_Pretrain, Data_Domain_Multimodal, Data_Quantity, Data_Scaling
Beyond neural scaling laws: beating power law scaling via data pruning NeurIPS'22, Data_Usage_Pretrain, Data_Domain_Vision, Data_Quantity, Data_Quality, Data_Scaling, Data_Processing_Selection
Reproducible scaling laws for contrastive language-image learning CVPR'23, Data_Usage_Pretrain, Data_Domain_Multimodal, Data_Quantity, Data_Scaling
An Inverse Scaling Law for CLIP Training NeurIPS'23, Data_Usage_Pretrain, Data_Usage_FineTune, Data_Domain_Multimodal, Data_Quantity, Data_Scaling
Scale Efficiently: Insights From Pre-Training And Fine-Tuning Transformers ICLR'22, Data_Usage_FineTune, Data_Domain_Text, Data_Quantity, Data_Scaling
LIMA: Less Is More for Alignment NeurIPS'23, Data_Usage_FineTune, Data_Domain_Text, Data_Quality, Data_Quantity, Data_Processing_Selection
LESS: Selecting Influential Data for Targeted Instruction Tuning arXiv'2402, Data_Usage_FineTune, Data_Domain_Text, Data_Quality, Data_Processing_Selection
Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIP NeurIPS'22, Data_Usage_Pretrain, Data_Domain_Multimodal, Data_Quality, Data_Processing_Mixture
Data Similarity is Not Enough to Explain Language Model Performance EMNLP'23, Data_Usage_Pretrain, Data_Usage_FineTune, Data_Domain_Text, Data_Diversity
On the Connection between Pre-training Data Diversity and Fine-tuning Robustness NeurIPS'23, Data_Usage_Pretrain, Data_Usage_FineTune, Data_Domain_Vision, Data_Domain_Multimodal, Data_Diversity, Data_Quantity
Data Selection for Language Models via Importance Resampling NeurIPS'23, Data_Usage_Pretrain, Data_Domain_Text, Data_Quality, Data_Processing_Selection
A Survey on Data Selection for Language Models arXiv'2403, Data_Usage_Pretrain, Data_Usage_FineTune, Data_Domain_Multimodal, Data_Domain_Text, Data_Quality, Data_Processing_Selection