-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathradix.c
229 lines (202 loc) · 5.46 KB
/
radix.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#include <stdlib.h> // malloc
#include <string.h> // memset
#include "radix.h"
static void countSort(int arr[], int n, int byte, int *output) {
int i, count[256] = {0};
for (i = 0; i < n; i++)
count[(arr[i] >> (8 * byte)) & 0xFF]++;
for (i = 1; i < 256; i++)
count[i] += count[i - 1];
for (i = n - 1; i >= 0; i--) {
int j = (arr[i] >> (8 * byte)) & 0xFF;
output[count[j] - 1] = arr[i];
count[j]--;
}
}
static int getMaxByte(int arr[], int n) {
int i, all = 0;
for (i = 0; i < n; ++i) {
all |= arr[i];
if (0xFF000000 & all) {
break;
}
}
return 0xFF000000 & all ? 4 :
0xFF0000 & all ? 3 :
0xFF00 & all ? 2:
1;
}
// Sort array of integers
// XXX probably wrong for negative numbers
void radixSort(int arr[], int n) {
// Find the maximum number to know number of digits
int m = getMaxByte(arr, n), byte;
int *current = arr,
*output = malloc(n * sizeof(int)),
*t;
// Do counting sort for every digit. Note that instead
// of passing digit number, exp is passed. exp is 10^i
// where i is current digit number
for (byte = 0; byte < m; byte += 1) {
countSort(current, n, byte, output);
// to avoid multiple alloc, this reuses two
// buffers as we sort each digit.
t = output;
output = current;
current = t;
}
// if we end on the "wrong" buffer, copy it.
if (current != arr) {
int i;
for (i = 0; i < n; i++)
arr[i] = current[i];
}
}
static void zero(int *a, int n) {
memset(a, 0, n * sizeof(int));
}
static int *count;
static void countSortIndicies(int *vals, int *input, int n, int *output) {
zero(count, 256);
// Store count of occurrences in count[]
for (int i = 0; i < n; i++) {
count[vals[i]]++;
}
// Change count[i] so that count[i] now contains actual
// position of this digit in output[]
for (int i = 1; i < 256; i++) {
count[i] += count[i - 1];
}
// Build the output array
for (int i = n - 1; i >= 0; i--) {
int j = vals[i];
output[count[j] - 1] = input[i];
count[j]--;
}
}
// Sort indicies by integer values.
// XXX The complexity of valList isn't necessary: it should be
// equivalent to making multiple calls.
void radixSortMultiple(int **valList, int valListLength, int n, int *indicies) {
int *current = indicies;
int *output = malloc(n * sizeof(int));
int *oVals = malloc(n * sizeof(int));
for (int vi = 0; vi < valListLength; ++vi) {
int *vals = valList[vi];
// XXX If we're using the pre-sorted column order, we don't need to
// scan to get the max.
int m = getMaxByte(vals, n);
int *t;
for (int byte = 0; byte < m; byte += 1) {
int shift = byte << 3;
// XXX Doesn't this just slow things down? We don't
// need the re-ordered values to compute histogram, so
// the indirection is only when building the output array.
// So we could move the indirection to that step & drop
// this one.
// Would need to pass in 'shift', again.
for (int j = 0; j < n; ++j) {
oVals[j] = (vals[current[j]] >> shift) & 0xFF;
}
countSortIndicies(oVals, current, n, output);
// to avoid multiple alloc, this reuses two
// buffers as we sort each digit.
t = output;
output = current;
current = t;
}
}
// if we end on the "wrong" buffer, copy it.
// XXX use memcpy
if (current != indicies) {
for (int i = 0; i < n; i++) {
indicies[i] = current[i];
}
output = current;
}
free(oVals);
free(output);
}
void radixSortMultiple_init() {
count = malloc(256 * sizeof(int));
}
static int *count32;
static void countSortIndicies32(int *vals, int *input, int n, int *output) {
zero(count32, n);
// Store count of occurrences in count[]
for (int i = 0; i < n; i++) {
count32[vals[i]]++;
}
// Change count[i] so that count[i] now contains actual
// position of this digit in output[]
for (int i = 1; i < n; i++) {
count32[i] += count32[i - 1];
}
// Build the output array
for (int i = n - 1; i >= 0; i--) {
int j = vals[i];
output[count32[j] - 1] = input[i];
count32[j]--;
}
}
// XXX The complexity of valList isn't necessary: it should be
// equivalent to making multiple calls.
// XXX Note that this sorts ORDINALS, not arbitrary integers. In particular,
// the highest number should be less than or equal to n.
void radixSortMultiple32(int **valList, int valListLength, int n, int *indicies) {
int *current = indicies;
int *output = malloc(n * sizeof(int));
int *oVals = malloc(n * sizeof(int));
for (int vi = 0; vi < valListLength; ++vi) {
int *vals = valList[vi];
// XXX If we're using the pre-sorted column order, we don't need to
// scan to get the max.
int m = getMaxByte(vals, n);
int *t;
for (int j = 0; j < n; ++j) {
oVals[j] = vals[current[j]];
}
countSortIndicies32(oVals, current, n, output);
// to avoid multiple alloc, this reuses two
// buffers as we sort each digit.
t = output;
output = current;
current = t;
}
// if we end on the "wrong" buffer, copy it.
// XXX use memcpy
if (current != indicies) {
for (int i = 0; i < n; i++) {
indicies[i] = current[i];
}
}
}
void radixSortMultiple32_init(int N) {
count32 = malloc(N * sizeof(int));
}
//static int N = 10;
static int icmp(const void *ip, const void *jp, void *x) {
int i = *(const int *)ip;
int j = *(const int *)jp;
return
i == j ? 0 :
i > j ? 1:
-1;
}
#if 0
#define maxr RAND_MAX;
int rscale = RAND_MAX / maxr;
int *getarr() {
int *arr = malloc(N * sizeof(int));
int i;
for (i = 0; i < N; ++i) {
arr[i] = rand() / rscale;
}
return arr;
}
int *cpyarr(int *in) {
int *out = malloc(N * sizeof(int));
memcpy(out, in, N * sizeof(int));
return out;
}
#endif