You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thank you for making this tool! I am running into an issue when I run python main.py --task classification:
/Users/gianmarcoterrones/opt/anaconda3/envs/cgcnn/lib/python3.11/site-packages/pymatgen/io/cif.py:1134: UserWarning: Issues encountered while parsing CIF: Some fractional coordinates rounded to ideal values to avoid issues with finite precision.
warnings.warn("Issues encountered while parsing CIF: " + "\n".join(self.warnings))
Traceback (most recent call last):
File "/Users/gianmarcoterrones/Research/cgcnn/main.py", line 513, in <module>
main()
File "/Users/gianmarcoterrones/Research/cgcnn/main.py", line 175, in main
train(train_loader, model, criterion, optimizer, epoch, normalizer)
File "/Users/gianmarcoterrones/Research/cgcnn/main.py", line 252, in train
loss = criterion(output, target_var)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/gianmarcoterrones/opt/anaconda3/envs/cgcnn/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/gianmarcoterrones/opt/anaconda3/envs/cgcnn/lib/python3.11/site-packages/torch/nn/modules/loss.py", line 216, in forward
return F.nll_loss(input, target, weight=self.weight, ignore_index=self.ignore_index, reduction=self.reduction)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/gianmarcoterrones/opt/anaconda3/envs/cgcnn/lib/python3.11/site-packages/torch/nn/functional.py", line 2704, in nll_loss
return torch._C._nn.nll_loss_nd(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
IndexError: Target 2 is out of bounds.
Have I made an error in setting up the customized dataset? Or does the code not currently support multiclass classification? The entries of my id_prop.csv look like this:
ACOFUU
1
ACOGAB
1
ACOGEF
1
ADABAK
2
AFEJUQ
1
AGUBUA
1
AKOXIJ
1
ALAMUW
0
The text was updated successfully, but these errors were encountered:
Thank you for making this tool! I am running into an issue when I run
python main.py --task classification
:Have I made an error in setting up the customized dataset? Or does the code not currently support multiclass classification? The entries of my id_prop.csv look like this:
The text was updated successfully, but these errors were encountered: