-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmnist.py
145 lines (127 loc) · 6.04 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from __future__ import print_function
import argparse
import os
import subprocess
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel
def dist_init(host_addr, rank, local_rank, world_size, port=23456):
host_addr_full = 'tcp://' + host_addr + ':' + str(port)
torch.distributed.init_process_group("gloo", init_method=host_addr_full,
rank=rank, world_size=world_size)
assert torch.distributed.is_initialized()
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(args, model, local_rank, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(local_rank), target.to(local_rank)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, local_rank, test_loader, world_size):
model.eval()
test_loss = 0
correct = 0
length = len(test_loader.dataset)/world_size
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(local_rank), target.to(local_rank)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= length
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, length,
100. * correct / length))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
parser.add_argument('--datasetDir',
help='Please add your dataset directory')
args = parser.parse_args()
# use_cuda = not args.no_cuda and torch.cuda.is_available()
# torch.manual_seed(args.seed)
# device = torch.device("cuda" if use_cuda else "cpu")
# kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
rank = int(os.environ['SLURM_PROCID'])
local_rank = int(os.environ['SLURM_LOCALID'])
world_size = int(os.environ['SLURM_NTASKS'])
iplist = os.environ['SLURM_JOB_NODELIST']
ip = subprocess.getoutput(f"scontrol show hostname {iplist} | head -n1")
dist_init(ip, rank, local_rank, world_size)
train_dataset = datasets.MNIST(args.datasetDir, train=True, download=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
train_sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=rank)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
sampler=train_sampler
)
test_dataset = datasets.MNIST(args.datasetDir, train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
test_sampler = DistributedSampler(test_dataset, num_replicas=world_size, rank=rank)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.test_batch_size,
sampler=test_sampler
)
model = Net().to(local_rank)
model = DistributedDataParallel(model)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
train(args, model, local_rank, train_loader, optimizer, epoch)
test(args, model, local_rank, test_loader, world_size)
if (args.save_model):
torch.save(model.state_dict(),"mnist_cnn.pt")
if __name__ == "__main__":
main()