-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcomputer.h
171 lines (147 loc) · 8.6 KB
/
computer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#pragma once
#ifndef GPGPU_COMPUTER_LIB
#define GPGPU_COMPUTER_LIB
#include "gpgpu_init.hpp"
#include "worker.h"
#include "platform.h"
#include <map>
#include <memory>
#include <vector>
namespace GPGPU
{
// an object for managing devices, kernels, worker cpu threads, load-balancing and creating/using parameters
struct Computer
{
const static int DEVICE_ALL = 1 + 2 + 4;
const static int DEVICE_GPUS = 1;
const static int DEVICE_CPUS = 2;
const static int DEVICE_ACCS = 4;
const static int DEVICE_SELECTION_ALL = -1;
private:
std::map<std::string, std::vector<double>> loadBalances;
std::vector<size_t> offsets;
std::vector<size_t> ranges;
std::map<std::string, std::vector<std::vector<double>>> oldLoadBalances;
GPGPU_LIB::PlatformManager platform;
std::vector<std::shared_ptr<GPGPU_LIB::Worker>> workers;
std::map<std::string, GPGPU::HostParameter> hostParameters;
std::mutex compileLock; // serialize device code compilations
// kernel to parameters to position mapping
std::map<std::string, std::map<std::string, int>> kernelParameters;
/*
deviceSelection = Computer::DEVICE_ALL ==> uses all gpu & cpu devices
*/
public:
/*
deviceSelection: selects type of devices to be queried. DEVICE_GPUS, DEVICE_CPUS, DEVICE_ACCS, DEVICE_ALL
selectionIndex >= 0: selects single device from queried device list by index
selectionIndex == -1 (DEVICE_SELECTION_ALL): selects all devices from query list
clonesPerDevice: number of times each physical device is duplicated in worker thread array to: overlap I/O to gain more performance, higher load-balancing quality
CPU device is not cloned and is taken few of its threads to be dedicated for controling other devices fast.
If there are 4 GPU devices, then a 24-thread CPU is used as a 20-thread CPU by OpenCL's device fission feature and 4 threads serve the GPUs efficiently.
giveDirectRamAccessToCPU: OpenCL spec does not give permission to iGPU + CPU map/unmap on same host pointer simultaneously. So one has to pick iGPU or CPU to have direct-access (zero-copy) to RAM during computations.
true = CPU gets direct RAM access
false = iGPU gets direct RAM access
the other one works same as a discrete device
*/
Computer(int deviceSelection, int selectionIndex = DEVICE_SELECTION_ALL, int clonesPerDevice = 1, bool giveDirectRamAccessToCPU=true, int maxDevices=100);
// returns number of queried devices (sum of devices from all platforms)
int getNumDevices();
/* compiles kernel code for given kernel name(that needs to be same as the function name in the kernel code) for all devices
* not thread-safe between multiple Computer objects
*/
void compile(std::string kernelCode, std::string kernelName);
/*
parameterName: parameter's name that is used when binding to kernel by setKernelParameter() or by method chaining ( computer.compute( a.next(b).next(c), "kernelName",.. ) )
numElements: number of elements with selected type (template parameter such as int, uint, int8_t, etc)
numElementsPerThread: number of elements with selected type accessed by each work-item / gpu-thread / smallest work unit in OpenCL
total number of global threads (work-items) to run = numElements / numElementsPerThread
isInput = true ==> this parameter's host data is copied to devices before kernel is run (each device gets its own region unless isInputWithAllElements=true)
isOutput=true ==> this parameter's devices' data are copied to host after kernel is run (each device copies its own regio)
isInputWithAllElements=true ==> whole buffer is read instead of thread's own region when isInput=true. This is useful when all devices need a copy of whole array.
!!! host parameter can only be input-only or output-only (currently) (because this lets all devices run independently without extra synchronization cost) !!!
*/
template<typename T>
HostParameter createHostParameter(std::string parameterName, size_t numElements, size_t numElementsPerThread, bool isInput, bool isOutput, bool isInputWithAllElements,bool isOutputWithAllElements, bool isScalar)
{
hostParameters[parameterName] = HostParameter(parameterName, numElements, sizeof(T), numElementsPerThread, isInput, isOutput, isInputWithAllElements,isOutputWithAllElements,isScalar);
for (int i = 0; i < workers.size(); i++)
{
workers[i]->mirror(&hostParameters[parameterName]);
}
return hostParameters[parameterName];
}
// creates a single item - array on host side but a scalar on device side
template<typename T>
HostParameter createScalarInput(std::string parameterName)
{
return createHostParameter<T>(parameterName, 1, 1, true, false, true,false,true);
}
// creates input array. All elements are copied to all devices.
// use for randomly accessing any other data element within any work-item or device
template<typename T>
HostParameter createArrayInput(std::string parameterName, size_t numElements, size_t numElementsPerThread=1)
{
return createHostParameter<T>(parameterName, numElements, numElementsPerThread, true, false, true,false,false);
}
// creates input array. Devices get only their own elements.
// use for embarrassingly-parallel data where neighboring data elements are not required
template<typename T>
HostParameter createArrayInputLoadBalanced(std::string parameterName, size_t numElements, size_t numElementsPerThread=1)
{
return createHostParameter<T>(parameterName, numElements, numElementsPerThread, true, false, false,false,false);
}
// creates output array. Devices copy only their own elements to the output because of possible race-conditions
// works like createArrayInputLoadBalanced except for the output
template<typename T>
HostParameter createArrayOutput(std::string parameterName, size_t numElements, size_t numElementsPerThread=1)
{
return createHostParameter<T>(parameterName, numElements, numElementsPerThread, false, true, false,false,false);
}
// creates output array. Devices copy all elements and has race-condition when num devices > 1
// works like createArrayInput except for the output
template<typename T>
HostParameter createArrayOutputAll(std::string parameterName, size_t numElements, size_t numElementsPerThread = 1)
{
return createHostParameter<T>(parameterName, numElements, numElementsPerThread, false, true, false, true,false);
}
// creates array that is not used for I/O with host (only meant for device-side state storage)
template<typename T>
HostParameter createArrayState(std::string parameterName, size_t numElements, size_t numElementsPerThread = 1)
{
return createHostParameter<T>(parameterName, numElements, numElementsPerThread, false, false, false,false,false);
}
// binds a parameter to a kernel at parameterPosition-th position
void setKernelParameter(std::string kernelName, std::string parameterName, int parameterPosition);
// applies load-balancing inside each call (better for uneven workloads per work-item)
std::vector<double> runFineGrainedLoadBalancing(std::string kernelName, size_t offsetElement, size_t numGlobalThreads, size_t numLocalThreads, size_t loadSize);
std::vector<double> runFineGrainedLoadBalancingMultiple(std::vector<std::string> kernelNames, size_t offsetElement, size_t numGlobalThreads, size_t numLocalThreads, size_t loadSize);
/*
applies load - balancing between calls(better for even workloads per work - item)
returns workload ratios of devices (on the same order their names appear on deviceNames())
*/
std::vector<double> run(std::string kernelName, size_t offsetElement, size_t numGlobalThreads, size_t numLocalThreads);
std::vector<double> runMultiple(std::vector<std::string> kernelNames, size_t offsetElement, size_t numGlobalThreads, size_t numLocalThreads);
// works same as run with default parameters of fineGrainedLoadBalancing = false and fineGrainSize = 0
// works same as runFineGrainedLoadBalancing with fineGrainedLoadBalancing = true (which sets fineGrainSize = numLocalThreads that may not be optimal for performance for too high global threads)
std::vector<double> compute(
GPGPU::HostParameter prm,
std::string kernelName,
size_t offsetElement,
size_t numGlobalThreads,
size_t numLocalThreads,
bool fineGrainedLoadBalancing = false,
size_t fineGrainSize = 0);
std::vector<double> computeMultiple(
std::vector<GPGPU::HostParameter> prm,
std::vector<std::string> kernelName,
size_t offsetElement,
size_t numGlobalThreads,
size_t numLocalThreads,
bool fineGrainedLoadBalancing = false,
size_t fineGrainSize = 0);
// returns list of device names with their opencl version support
std::vector<std::string> deviceNames(bool detailed = true);
};
}
#endif // !GPGPU_COMPUTER_LIB