-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathdataset.py
217 lines (191 loc) · 7.86 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
from copy import deepcopy
from tqdm import tqdm
import torch
import torch.utils.data as data
from tree import Tree
from vocab import Vocab
import Constants
import utils
# Dataset class for SICK dataset
class SICKDataset(data.Dataset):
def __init__(self, path, vocab, num_classes):
super(SICKDataset, self).__init__()
self.vocab = vocab
self.num_classes = num_classes
self.lsentences = self.read_sentences(os.path.join(path,'a.toks'))
self.rsentences = self.read_sentences(os.path.join(path,'b.toks'))
self.ltrees = self.read_trees(os.path.join(path,'a.parents'))
self.rtrees = self.read_trees(os.path.join(path,'b.parents'))
self.labels = self.read_labels(os.path.join(path,'sim.txt'))
self.size = self.labels.size(0)
def __len__(self):
return self.size
def __getitem__(self, index):
ltree = deepcopy(self.ltrees[index])
rtree = deepcopy(self.rtrees[index])
lsent = deepcopy(self.lsentences[index])
rsent = deepcopy(self.rsentences[index])
label = deepcopy(self.labels[index])
return (ltree,lsent,rtree,rsent,label)
def read_sentences(self, filename):
with open(filename,'r') as f:
sentences = [self.read_sentence(line) for line in tqdm(f.readlines())]
return sentences
def read_sentence(self, line):
indices = self.vocab.convertToIdx(line.split(), Constants.UNK_WORD)
return torch.LongTensor(indices)
def read_trees(self, filename):
with open(filename,'r') as f:
trees = [self.read_tree(line) for line in tqdm(f.readlines())]
return trees
def read_tree(self, line):
parents = map(int,line.split())
trees = dict()
root = None
for i in xrange(1,len(parents)+1):
#if not trees[i-1] and parents[i-1]!=-1:
if i-1 not in trees.keys() and parents[i-1]!=-1:
idx = i
prev = None
while True:
parent = parents[idx-1]
if parent == -1:
break
tree = Tree()
if prev is not None:
tree.add_child(prev)
trees[idx-1] = tree
tree.idx = idx-1
#if trees[parent-1] is not None:
if parent-1 in trees.keys():
trees[parent-1].add_child(tree)
break
elif parent==0:
root = tree
break
else:
prev = tree
idx = parent
return root
def read_labels(self, filename):
with open(filename,'r') as f:
labels = map(lambda x: float(x), f.readlines())
labels = torch.Tensor(labels)
return labels
# Dataset class for SICK dataset
class SSTDataset(data.Dataset):
def __init__(self, path, vocab, num_classes, fine_grain, model_name):
super(SSTDataset, self).__init__()
self.vocab = vocab
self.num_classes = num_classes
self.fine_grain = fine_grain
self.model_name = model_name
temp_sentences = self.read_sentences(os.path.join(path,'sents.toks'))
if model_name == "dependency":
temp_trees = self.read_trees(os.path.join(path,'dparents.txt'), os.path.join(path,'dlabels.txt'))
else:
temp_trees = self.read_trees(os.path.join(path, 'parents.txt'), os.path.join(path, 'labels.txt'))
# self.labels = self.read_labels(os.path.join(path,'dlabels.txt'))
self.labels = []
if not self.fine_grain:
# only get pos or neg
new_trees = []
new_sentences = []
for i in range(len(temp_trees)):
if temp_trees[i].gold_label != 1: # 0 neg, 1 neutral, 2 pos
new_trees.append(temp_trees[i])
new_sentences.append(temp_sentences[i])
self.trees = new_trees
self.sentences = new_sentences
else:
self.trees = temp_trees
self.sentences = temp_sentences
for i in range(0, len(self.trees)):
self.labels.append(self.trees[i].gold_label)
self.labels = torch.Tensor(self.labels) # let labels be tensor
self.size = len(self.trees)
def __len__(self):
return self.size
def __getitem__(self, index):
# ltree = deepcopy(self.ltrees[index])
# rtree = deepcopy(self.rtrees[index])
# lsent = deepcopy(self.lsentences[index])
# rsent = deepcopy(self.rsentences[index])
# label = deepcopy(self.labels[index])
tree = deepcopy(self.trees[index])
sent = deepcopy(self.sentences[index])
label = deepcopy(self.labels[index])
return (tree, sent, label)
def read_sentences(self, filename):
with open(filename,'r') as f:
sentences = [self.read_sentence(line) for line in tqdm(f.readlines())]
return sentences
def read_sentence(self, line):
indices = self.vocab.convertToIdx(line.split(), Constants.UNK_WORD)
return torch.LongTensor(indices)
def read_trees(self, filename_parents, filename_labels):
pfile = open(filename_parents, 'r') # parent node
lfile = open(filename_labels, 'r') # label node
p = pfile.readlines()
l = lfile.readlines()
pl = zip(p, l) # (parent, label) tuple
trees = [self.read_tree(p_line, l_line) for p_line, l_line in tqdm(pl)]
return trees
def parse_dlabel_token(self, x):
if x == '#':
return None
else:
if self.fine_grain: # -2 -1 0 1 2 => 0 1 2 3 4
return int(x)+2
else: # # -2 -1 0 1 2 => 0 1 2
tmp = int(x)
if tmp < 0:
return 0
elif tmp == 0:
return 1
elif tmp >0 :
return 2
def read_tree(self, line, label_line):
# FIXED: tree.idx, also tree dict() use base 1 as it was in dataset
# parents is list base 0, keep idx-1
# labels is list base 0, keep idx-1
#parents = map(int,line.split()) # split each number and turn to int
parents = list(map(int,line.split())) # split each number and turn to int
trees = dict() # this is dict
root = None
#labels = map(self.parse_dlabel_token, label_line.split())
labels = list(map(self.parse_dlabel_token, label_line.split()))
for i in range(1,len(parents)+1):
#for i in range(1,len(list(parents))+1):
#if not trees[i-1] and parents[i-1]!=-1:
if i not in trees.keys() and parents[i-1]!=-1:
idx = i
prev = None
while True:
parent = parents[idx-1]
if parent == -1:
break
tree = Tree()
if prev is not None:
tree.add_child(prev)
trees[idx] = tree
tree.idx = idx # -1 remove -1 here to prevent embs[tree.idx -1] = -1 while tree.idx = 0
tree.gold_label = labels[idx-1] # add node label
#if trees[parent-1] is not None:
if parent in trees.keys():
trees[parent].add_child(tree)
break
elif parent==0:
root = tree
break
else:
prev = tree
idx = parent
return root
def read_labels(self, filename):
# Not in used
with open(filename,'r') as f:
labels = map(lambda x: float(x), f.readlines())
labels = torch.Tensor(labels)
return labels