-
-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathtrain.py
122 lines (104 loc) · 4.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# coding: UTF-8
"""
@author: samuel ko
"""
import torchvision_sunner.transforms as sunnertransforms
import torchvision_sunner.data as sunnerData
import torchvision.transforms as transforms
from networks_stylegan import StyleGenerator, StyleDiscriminator
from networks_gan import Generator, Discriminator
from utils import plotLossCurve
from loss import gradient_penalty
from opts import TrainOptions
from torchvision.utils import save_image
from tqdm import tqdm
from matplotlib import pyplot as plt
import torch.optim as optim
import numpy as np
import torch
import os
# Hyper-parameters
CRITIC_ITER = 5
def main(opts):
# Create the data loader
loader = sunnerData.DataLoader(sunnerData.ImageDataset(
root=[[opts.path]],
transform=transforms.Compose([
sunnertransforms.Resize((1024, 1024)),
sunnertransforms.ToTensor(),
sunnertransforms.ToFloat(),
sunnertransforms.Transpose(sunnertransforms.BHWC2BCHW),
sunnertransforms.Normalize(),
])),
batch_size=opts.batch_size,
shuffle=True,
)
# Create the model
G = StyleGenerator(bs=opts.batch_size).to(opts.device)
D = StyleDiscriminator().to(opts.device)
# G = Generator().to(opts.device)
# D = Discriminator().to(opts.device)
# Create the criterion, optimizer and scheduler
optim_D = optim.Adam(D.parameters(), lr=0.0001, betas=(0.5, 0.999))
optim_G = optim.Adam(G.parameters(), lr=0.0001, betas=(0.5, 0.999))
scheduler_D = optim.lr_scheduler.ExponentialLR(optim_D, gamma=0.99)
scheduler_G = optim.lr_scheduler.ExponentialLR(optim_G, gamma=0.99)
# Train
fix_z = torch.randn([opts.batch_size, 512]).to(opts.device)
Loss_D_list = [0.0]
Loss_G_list = [0.0]
for ep in range(opts.epoch):
bar = tqdm(loader)
loss_D_list = []
loss_G_list = []
for i, (real_img,) in enumerate(bar):
# =======================================================================================================
# Update discriminator
# =======================================================================================================
# Compute adversarial loss toward discriminator
real_img = real_img.to(opts.device)
real_logit = D(real_img)
fake_img = G(torch.randn([real_img.size(0), 512]).to(opts.device))
fake_logit = D(fake_img.detach())
d_loss = -(real_logit.mean() - fake_logit.mean()) + gradient_penalty(real_img.data, fake_img.data, D) * 10.0
loss_D_list.append(d_loss.item())
# Update discriminator
optim_D.zero_grad()
d_loss.backward()
optim_D.step()
# =======================================================================================================
# Update generator
# =======================================================================================================
if i % CRITIC_ITER == 0:
# Compute adversarial loss toward generator
fake_img = G(torch.randn([opts.batch_size, 512]).to(opts.device))
fake_logit = D(fake_img)
g_loss = -fake_logit.mean()
loss_G_list.append(g_loss.item())
# Update generator
D.zero_grad()
optim_G.zero_grad()
g_loss.backward()
optim_G.step()
bar.set_description(" {} [G]: {} [D]: {}".format(ep, loss_G_list[-1], loss_D_list[-1]))
# Save the result
Loss_G_list.append(np.mean(loss_G_list))
Loss_D_list.append(np.mean(loss_D_list))
fake_img = G(fix_z)
save_image(fake_img, os.path.join(opts.det, 'images', str(ep) + '.png'), nrow=4, normalize=True)
state = {
'G': G.state_dict(),
'D': D.state_dict(),
'Loss_G': Loss_G_list,
'Loss_D': Loss_D_list,
}
torch.save(state, os.path.join(opts.det, 'models', 'latest.pth'))
scheduler_D.step()
scheduler_G.step()
# Plot the total loss curve
Loss_D_list = Loss_D_list[1:]
Loss_G_list = Loss_G_list[1:]
plotLossCurve(opts, Loss_D_list, Loss_G_list)
if __name__ == '__main__':
opts = TrainOptions().parse()
main(opts)