-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
247 lines (222 loc) · 9.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import dash
from dash import dcc, html
from dash.dependencies import Input, Output, State
import plotly.graph_objs as go
import pandas as pd
import requests
import json
from datetime import date
import time
import h3
TB_BASE_URL = 'https://api.tinybird.co/v0/pipes/'
# Read in token from the .tinyb JSON file
with open('.tinyb') as f:
tinyb_data = json.load(f)
TB_TOKEN = tinyb_data['token']
# Utility functions
def format_bytes(size):
"""Convert bytes to a more readable format."""
suffixes = ['B', 'KB', 'MB', 'GB', 'TB', 'PB']
i = 0
while size >= 1024 and i < len(suffixes)-1:
size /= 1024.
i += 1
return f"{size:.2f} {suffixes[i]}"
def fetch_mmsi_list():
"""Fetches a list of unique MMSIs from Tinybird."""
response = requests.get(f"{TB_BASE_URL}mmsi_unique.json?token={TB_TOKEN}")
mmsis = response.json()['data']
return [{'label': str(mmsi['mmsi']), 'value': mmsi['mmsi']} for mmsi in mmsis]
def prepare_hexagon_data(df, h3_boundary_column_name):
"""
Prepare hexagon boundary data for plotting from a DataFrame. Adjusts for closing polygons
and ensures coordinates are in the expected order.
:param df: The DataFrame with H3 boundary arrays.
:param h3_boundary_column_name: The name of the column containing H3 boundaries.
:return: A list of dictionaries with 'lon' and 'lat' keys for each hexagon.
"""
hexagon_data = []
for boundary in df[h3_boundary_column_name]:
# Ensure the polygon is closed by appending the first vertex to the end
boundary.append(boundary[0])
# Reverse the order of vertices so they render correctly in plotly.
boundary_reversed = boundary[::-1]
# Unpack the array of [lat, lon] pairs into separate lists
# reversing the order to [lon, lat] for plotly
lons, lats = zip(*[(lon, lat) for lat, lon in boundary_reversed])
hexagon_data.append({'lon': lons, 'lat': lats})
return hexagon_data
# Initialize the Dash app
app = dash.Dash(__name__)
mmsi_options = fetch_mmsi_list()
app.layout = html.Div([
dcc.Store(id='cached-data'), # Store for caching fetched data
html.Header([
html.Img(src=app.get_asset_url('tinybird-logo.svg')),
html.H2([html.Span("AIS", className='border-brand'), html.Span(" Data Visualization")], className='title'),
]),
# Flex container
html.Div([
# Left column for input elements
html.Div([
html.P('Select options and click submit to see data.', className='subtitle'),
html.Label('Display Mode', htmlFor='display-mode'),
dcc.RadioItems(
id='display-mode',
options=[
{'label': 'H3 r4', 'value': 'h3_r4'},
{'label': 'H3 r6', 'value': 'h3_r6'},
{'label': 'H3 r8', 'value': 'h3_r8'},
{'label': 'LatLong', 'value': 'data_points'}
],
value='h3_r4', # Default value
className='input',
labelClassName="label-radio"
),
html.Label('MMSI', htmlFor='mmsi-dropdown'),
dcc.Dropdown(
id='mmsi-dropdown',
options=mmsi_options,
value=mmsi_options[0]['value'] if mmsi_options else None,
searchable=True,
placeholder='Select MMSI',
className='input'
),
html.Label('Start Date', htmlFor='start-date-input'),
dcc.DatePickerSingle(
id='start-date-input',
min_date_allowed=date(2020, 1, 1),
max_date_allowed=date(2020, 5, 31),
initial_visible_month=date(2020, 1, 1),
date=date(2020, 1, 1),
className='input'
),
html.Label('End Date', htmlFor='end-date-input'),
dcc.DatePickerSingle(
id='end-date-input',
min_date_allowed=date(2020, 1, 1),
max_date_allowed=date(2020, 5, 31),
initial_visible_month=date(2020, 5, 31),
date=date(2020, 1, 31),
className='input'
),
html.Button('Submit', id='submit-val', n_clicks=0, className='submit'),
html.Div(id="performance-info"),
], className='form'),
# Right column for the map
html.Div([
dcc.Graph(id='map-display', className='map')
], className='graph')
], className='row'),
])
def prepare_performance_info(cached_data):
request_roundtrip_time = cached_data.get('request_roundtrip_time', 'N/A')
tb_elapsed = cached_data.get('statistics', {}).get('elapsed', 'N/A')
tb_bytes_read = cached_data.get('statistics', {}).get('bytes_read', 'N/A')
data_points = len(cached_data.get('data', []))
return [
html.Div(f"Request roundtrip time: {request_roundtrip_time:.3f} s"),
html.Div(f"Tinybird processing time: {tb_elapsed:.3f} s"),
html.Div(f"Tinybird Bytes read: {format_bytes(tb_bytes_read)}"),
html.Div(f"Data points: {data_points}")
]
@app.callback(
Output('cached-data', 'data'),
[Input('submit-val', 'n_clicks')],
[State('mmsi-dropdown', 'value'),
State('start-date-input', 'date'),
State('end-date-input', 'date'),
State('display-mode', 'value')]
)
def fetch_data(n_clicks, mmsi, start_date, end_date, display_mode):
if n_clicks > 0:
start_request_time = time.time()
api_endpoint = "latlon_by_date_by_mmsi.json" if display_mode == 'data_points' else "h3_by_date_by_mmsi.json"
h3_resolution = "" if display_mode == 'data_points' else f"&h3r=h3_r{display_mode[-1]}"
url = f"{TB_BASE_URL}{api_endpoint}?mmsis={mmsi}&startdate={start_date}&enddate={end_date}{h3_resolution}&token={TB_TOKEN}"
response = requests.get(url)
end_request_time = time.time()
data = response.json().get('data', [])
print(f"Requests data length: {len(data)}")
return {
'mode': display_mode,
'data': data,
'request_roundtrip_time': end_request_time - start_request_time,
'statistics': response.json().get('statistics', {}),
'cache_key': f"{display_mode}_{start_date}_{end_date}_{mmsi}" # Unique key for caching
}
return {}
@app.callback(
[Output('map-display', 'figure'), Output("performance-info", "children")],
[Input('cached-data', 'data')]
)
def update_map(cached_data):
if not cached_data or 'data' not in cached_data or not cached_data['data']:
return go.Figure(), ''
display_mode = cached_data.get('mode')
print(f"Dislay mode: {display_mode}")
print(f"Cache Key: {cached_data.get('cache_key')}")
df = pd.DataFrame(cached_data['data'])
fig = go.Figure()
# Rendering logic based on display_mode
if display_mode.startswith('h3'):
# Render hexagons
fig = render_hexagons(df, fig)
elif display_mode == 'data_points':
# Render lat/long points
fig = render_latlong_points(df, fig)
# Adjust viewport to fit the rendered data
adjust_viewport(fig)
performance_info = prepare_performance_info(cached_data)
return fig, html.Div(performance_info, className='info')
def adjust_viewport(fig):
# Attempt to automatically adjust the map's viewport to show all plotted data
fig.update_layout(
geo=dict(
fitbounds="locations", # This tells Plotly to fit the plotted locations
projection_type="equirectangular"
),
margin={"r":0, "t":0, "l":0, "b":0}
)
# Updating layout to include custom styling
fig.update_layout(
margin={"r":0, "t":0, "l":0, "b":0},
geo=dict(
scope='world',
showland=True,
landcolor="rgb(217, 217, 217)", # This sets the land color
showocean=True,
oceancolor="rgb(224, 255, 255)", # This sets the ocean color
showcountries=True,
countrycolor="DarkGrey",
fitbounds="locations" # Automatically adjusting viewport to fit the data
),
title=dict(text="AIS Data Visualization", x=0.5) # Center title
)
def render_hexagons(df, fig):
# Preparing hexagon data
hexagon_data = prepare_hexagon_data(df, 'h3_boundary')
for hex_data in hexagon_data:
fig.add_trace(go.Scattergeo(
lon=hex_data['lon'],
lat=hex_data['lat'],
mode='lines',
line=dict(width=1, color='orange'), # Hexagon line color
fill='toself',
fillcolor='rgba(255, 165, 0, 0.5)' # Hexagon fill color with some transparency
))
return fig
def render_latlong_points(df, fig):
# Plotting lat-long points with specific marker settings
fig.add_trace(go.Scattergeo(
lon=df['lon'],
lat=df['lat'],
mode='markers+lines',
marker=dict(size=7, color='red'), # Data point color
line=dict(width=2, color='red'), # Line color connecting the points
text=df['basedatetime'], # Assuming 'basedatetime' contains timestamp or similar info
name='Path'
))
return fig
if __name__ == '__main__':
app.run_server(debug=True)