forked from carpedm20/MemN2N-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
56 lines (43 loc) · 2.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import pprint
import tensorflow as tf
from data import read_data
from model import MemN2N
pp = pprint.PrettyPrinter()
flags = tf.app.flags
flags.DEFINE_integer("edim", 150, "internal state dimension [150]")
flags.DEFINE_integer("lindim", 75, "linear part of the state [75]")
flags.DEFINE_integer("nhop", 6, "number of hops [6]")
flags.DEFINE_integer("mem_size", 100, "memory size [100]")
flags.DEFINE_integer("batch_size", 128, "batch size to use during training [128]")
flags.DEFINE_integer("nepoch", 100, "number of epoch to use during training [100]")
flags.DEFINE_float("init_lr", 0.01, "initial learning rate [0.01]")
flags.DEFINE_float("init_hid", 0.1, "initial internal state value [0.1]")
flags.DEFINE_float("init_std", 0.05, "weight initialization std [0.05]")
flags.DEFINE_float("max_grad_norm", 50, "clip gradients to this norm [50]")
flags.DEFINE_string("data_dir", "data", "data directory [data]")
flags.DEFINE_string("checkpoint_dir", "checkpoints", "checkpoint directory [checkpoints]")
flags.DEFINE_string("data_name", "ptb", "data set name [ptb]")
flags.DEFINE_boolean("is_test", False, "True for testing, False for Training [False]")
flags.DEFINE_boolean("show", False, "print progress [False]")
FLAGS = flags.FLAGS
def main(_):
count = []
word2idx = {}
if not os.path.exists(FLAGS.checkpoint_dir):
os.makedirs(FLAGS.checkpoint_dir)
train_data = read_data('%s/%s.train.txt' % (FLAGS.data_dir, FLAGS.data_name), count, word2idx)
valid_data = read_data('%s/%s.valid.txt' % (FLAGS.data_dir, FLAGS.data_name), count, word2idx)
test_data = read_data('%s/%s.test.txt' % (FLAGS.data_dir, FLAGS.data_name), count, word2idx)
idx2word = dict(zip(word2idx.values(), word2idx.keys()))
FLAGS.nwords = len(word2idx)
pp.pprint(flags.FLAGS.__flags)
with tf.Session() as sess:
model = MemN2N(FLAGS, sess)
model.build_model()
if FLAGS.is_test:
model.run(valid_data, test_data)
else:
model.run(train_data, valid_data)
if __name__ == '__main__':
tf.app.run()