-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_chatgpt_conversations_json.py
executable file
·224 lines (196 loc) · 7.97 KB
/
convert_chatgpt_conversations_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/env python3
"""
Author : Xinyuan Chen <[email protected]>
Date : 2023-05-10
Purpose: Convert conversations.json to a linear conversation format
"""
import argparse
import json
from pathlib import Path
from typing import Any, Literal, Union
from utils import date_from_chatgpt_unix_timestamp
from config import (
chatgpt_exported_conversations_json_path,
chatgpt_linear_conversations_json_path,
dalle_non_sense_messages,
)
class ChatGPTChatHistoryMessage:
id: str
parent_id: str | None = None
children_ids: list[str] = []
parent: Union['ChatGPTChatHistoryMessage', None] = None
children: list['ChatGPTChatHistoryMessage'] = []
role: Literal['system', 'assistant', 'user', 'tool'] | None = None
content_type: Literal['text', 'multimodal_text'] | None = None
content: str | None = None
# None when role == user or system, not none when role == assistant
# text-davinci-002-render: text-davinci-002-render-sha
# gpt-4: gpt-4
model_slug: str = 'text-davinci-002-render'
plugin: bool = False
# None, 'all', 'kayak.whatever' etc
recipient: str | None = None
# <|im_end|> if it's a message to a tool (always json)
# tool response could be json or text
# <|diff_marker|> if it's the final response to the user
finish_details_marker: Literal['<|im_end|>', '<|diff_marker|>'] | None = None
finish_details_type: Literal['stop', 'interrupted'] | None = None
response_message_type: Literal['request', 'tool', 'finish'] | None = None
message_type: Literal[
'system', 'user', 'non_plugin_response', 'request', 'tool', 'finish'
] | None = None
# like 'rentable_apartments.getApartments'
# not none when role == tool
tool_name: str | None = None
def set_response_message_type(self):
if not self.plugin:
return
match self.role:
case 'tool':
self.response_message_type = 'tool'
case 'assistant':
match self.finish_details_marker:
case '<|im_end|>':
self.response_message_type = 'request'
case '<|diff_marker|>':
self.response_message_type = 'finish'
def chatgpt_conversation_to_linear_chat_history(
chatgpt_conversation: dict,
) -> dict[str, Any]:
"""Convert a single conversation in the exported json to linear chat messages"""
conversation_id: str = chatgpt_conversation['id']
title: str = chatgpt_conversation['title']
messages = chatgpt_conversation['mapping']
update_time_dt = date_from_chatgpt_unix_timestamp(
chatgpt_conversation['update_time']
)
update_time_iso = update_time_dt.isoformat()
create_time_iso = date_from_chatgpt_unix_timestamp(
int(chatgpt_conversation['create_time']) # type: ignore
).isoformat()
model_slug = "text-davinci-002-render"
plugin_enabled: bool = bool(chatgpt_conversation['plugin_ids'])
id_to_m: dict[str, ChatGPTChatHistoryMessage] = {}
for msg_id, message in messages.items():
m = ChatGPTChatHistoryMessage()
m.id = msg_id
m.parent_id = message['parent']
m.children_ids = message['children']
id_to_m[msg_id] = m
msg = message['message']
if msg is not None:
m.content_type = msg['content']['content_type']
# if m.content_type == 'multimodal_text':
# # dalle output or image input
# # images on azure, sigs in url, generated upon requests
# if
# continue
m.role = msg['author']['role']
if m.role == 'tool':
m.tool_name = msg['author']['name']
if m_parts := msg['content'].get('parts'):
m.content = m_parts[-1]
if m.content_type == 'multimodal_text':
if isinstance(m.content, str):
# image input prompt
pass
else:
# dalle image output
m.content = None
elif m_content := msg['content'].get('text'):
m.content = m_content
m.recipient = msg['recipient']
if metadata := msg.get('metadata'):
m.model_slug = metadata.get('model_slug')
if m.model_slug is not None:
model_slug = m.model_slug
if model_slug == 'gpt-4-dalle':
# the image prompts, or 'DALL·E returned some images. They are already displayed to the user. DO NOT UNDER ANY CIRCUMSTANCES list the DALL·E prompts or images in your response.'
# assert m.content
# if m.content.startswith('{'):
# # m.content = json.loads(m.content)
# m.content = '\n'.join(
# [
# '```json',
# m.content,
# '```',
# ]
# )
if m.content and m.content in dalle_non_sense_messages:
m.content = None
continue
if finish_details := metadata.get('finish_details'):
m.finish_details_marker = finish_details.get('stop', None)
m.finish_details_type = finish_details.get('type', None)
m.set_response_message_type
else:
m.role = None
m.content = None
for msg_id, message in id_to_m.items():
if message.parent_id:
message.parent = id_to_m[message.parent_id]
message.children = [id_to_m[child_id] for child_id in message.children_ids]
# in id_to_m, find the root message, that has role None and content None
root_message = [
x for x in id_to_m.values() if x.role is None and x.content is None
][0]
# starting from the root message, go down the tree; if a message has more than 1 children, only go for the last one.
# if a message has no children, stop.
linear_messages: list[ChatGPTChatHistoryMessage] = []
while True:
if len(root_message.children) == 0:
break
elif len(root_message.children) == 1:
root_message = root_message.children[0]
else:
root_message = root_message.children[-1]
linear_messages.append(root_message)
return {
'id': conversation_id,
'title': title,
'update_time': update_time_iso,
'create_time': create_time_iso,
'model_slug': model_slug,
'plugin_enabled': plugin_enabled,
'linear_messages': [m.content for m in linear_messages if m.content],
}
def get_args():
"""Get command-line arguments"""
parser = argparse.ArgumentParser(
description='Convert conversations.json to a linear conversation format',
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
'-i',
'--input',
help='Input conversations.json file',
metavar='PATH',
type=Path,
default=chatgpt_exported_conversations_json_path,
)
parser.add_argument(
'-o',
'--output',
help='Output linear chat history json file',
metavar='PATH',
type=Path,
default=chatgpt_linear_conversations_json_path,
)
return parser.parse_args()
def main():
"""Make a jazz noise here"""
args = get_args()
conversations = json.loads(args.input.read_text())
linear_conversations = [
chatgpt_conversation_to_linear_chat_history(c) for c in conversations
]
args.output.write_text(
json.dumps(
linear_conversations,
indent=2,
ensure_ascii=False,
)
)
print(f'Done! {len(linear_conversations)} conversations written to {args.output} .')
if __name__ == '__main__':
main()