-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathnoise.py
executable file
·67 lines (50 loc) · 2.11 KB
/
noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
class AdaptiveParamNoiseSpec(object):
def __init__(self, initial_stddev=0.1, desired_action_stddev=0.1, adoption_coefficient=1.01):
self.initial_stddev = initial_stddev
self.desired_action_stddev = desired_action_stddev
self.adoption_coefficient = adoption_coefficient
self.current_stddev = initial_stddev
def adapt(self, distance):
if distance > self.desired_action_stddev:
# Decrease stddev.
self.current_stddev /= self.adoption_coefficient
else:
# Increase stddev.
self.current_stddev *= self.adoption_coefficient
def get_stats(self):
stats = {
'param_noise_stddev': self.current_stddev,
}
return stats
def __repr__(self):
fmt = 'AdaptiveParamNoiseSpec(initial_stddev={}, desired_action_stddev={}, adoption_coefficient={})'
return fmt.format(self.initial_stddev, self.desired_action_stddev, self.adoption_coefficient)
class ActionNoise(object):
def reset(self):
pass
class NormalActionNoise(ActionNoise):
def __init__(self, mu, sigma):
self.mu = mu
self.sigma = sigma
def __call__(self):
return np.random.normal(self.mu, self.sigma)
def __repr__(self):
return 'NormalActionNoise(mu={}, sigma={})'.format(self.mu, self.sigma)
# Based on http://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab
class OrnsteinUhlenbeckActionNoise(ActionNoise):
def __init__(self, mu, sigma, theta=.15, dt=1e-2, x0=None):
self.theta = theta
self.mu = mu
self.sigma = sigma
self.dt = dt
self.x0 = x0
self.reset()
def __call__(self):
x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape)
self.x_prev = x
return x
def reset(self):
self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu)
def __repr__(self):
return 'OrnsteinUhlenbeckActionNoise(mu={}, sigma={})'.format(self.mu, self.sigma)