-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathhand gestures.py
134 lines (108 loc) · 4.41 KB
/
hand gestures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import numpy as np
import cv2
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from keras.utils import to_categorical
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
# 1. Data Collection Function
# Capture video frames and label them with corresponding gesture
def collect_gesture_data(gesture_name, num_samples):
cap = cv2.VideoCapture(0)
data_dir = 'gesture_data'
if not os.path.exists(data_dir):
os.makedirs(data_dir)
gesture_dir = os.path.join(data_dir, gesture_name)
if not os.path.exists(gesture_dir):
os.makedirs(gesture_dir)
print(f'Collecting {num_samples} samples for gesture "{gesture_name}"')
count = 0
while count < num_samples:
ret, frame = cap.read()
if not ret:
break
# Convert to grayscale for simplicity
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Resize the frame to a fixed size
resized_frame = cv2.resize(gray, (64, 64))
# Show the frame
cv2.imshow('Gesture Collection', frame)
# Save frame to disk
file_name = os.path.join(gesture_dir, f'{gesture_name}_{count}.jpg')
cv2.imwrite(file_name, resized_frame)
count += 1
# Break if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
print(f"Collected {count} frames for gesture {gesture_name}.")
# 2. Preprocessing the Dataset
def load_data(data_dir):
images = []
labels = []
for gesture_name in os.listdir(data_dir):
gesture_dir = os.path.join(data_dir, gesture_name)
if not os.path.isdir(gesture_dir):
continue
for img_name in os.listdir(gesture_dir):
img_path = os.path.join(gesture_dir, img_name)
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
img = img / 255.0 # Normalize the image
images.append(img)
labels.append(gesture_name)
images = np.array(images).reshape(-1, 64, 64, 1) # Reshape for CNN
label_encoder = LabelEncoder()
labels = to_categorical(label_encoder.fit_transform(labels))
return images, labels, label_encoder
# 3. CNN Model Definition
def build_model(input_shape, num_classes):
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
# 4. Main Program
if __name__ == '__main__':
gestures = ['play', 'pause', 'stop', 'volume_up', 'volume_down']
num_samples_per_gesture = 500
# Collecting gesture data
for gesture in gestures:
collect_gesture_data(gesture, num_samples_per_gesture)
# Load and preprocess data
data_dir = 'gesture_data'
images, labels, label_encoder = load_data(data_dir)
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, random_state=42)
# Build the CNN model
input_shape = (64, 64, 1) # Grayscale images, 64x64 pixels
num_classes = len(gestures)
model = build_model(input_shape, num_classes)
# Train the model
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))
# Save the model
model.save('gesture_recognition_cnn.h5')
# Testing the model with live input
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
resized_frame = cv2.resize(gray, (64, 64))
reshaped_frame = np.expand_dims(resized_frame, axis=0).reshape(-1, 64, 64, 1)
prediction = model.predict(reshaped_frame)
predicted_class = np.argmax(prediction)
gesture_label = label_encoder.inverse_transform([predicted_class])[0]
cv2.putText(frame, gesture_label, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow('Gesture Recognition', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()