-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathTraining.py
69 lines (54 loc) · 2.24 KB
/
Training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# import required packages
import cv2
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dense, Dropout, Flatten
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Initialize image data generator with rescaling
train_data_gen = ImageDataGenerator(rescale=1./255)
validation_data_gen = ImageDataGenerator(rescale=1./255)
# Preprocess all test images
train_generator = train_data_gen.flow_from_directory(
'train',
target_size=(48, 48),
batch_size=64,
color_mode="grayscale",
class_mode='categorical')
# Preprocess all train images
validation_generator = validation_data_gen.flow_from_directory(
'test',
target_size=(48, 48),
batch_size=64,
color_mode="grayscale",
class_mode='categorical')
# create model structure
emotion_model = Sequential()
emotion_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48, 48, 1)))
emotion_model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))
emotion_model.add(Flatten())
emotion_model.add(Dense(1024, activation='relu'))
emotion_model.add(Dropout(0.5))
emotion_model.add(Dense(7, activation='softmax'))
cv2.ocl.setUseOpenCL(False)
emotion_model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.0001, decay=1e-6), metrics=['accuracy'])
# Train the neural network/model
emotion_model_info = emotion_model.fit(
train_generator,
steps_per_epoch=28709 // 64,
epochs=50,
validation_data=validation_generator,
validation_steps=7178 // 64
)
# save model structure in jason file
model_json = emotion_model.to_json()
with open("emotion_model.json", "w") as json_file:
json_file.write(model_json)
# save trained model weight in .h5 file
emotion_model.save('emotion_model.h5')