-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmanifold-smoothing.py
505 lines (403 loc) · 20.9 KB
/
manifold-smoothing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
# Modified from https://github.com/Lingkai-Kong/Calibrated-BERT-Fine-Tuning/blob/main/manifold-smoothing.py
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '1'
from torch import nn
from torch.nn import functional as F
from torch.utils.data import TensorDataset, RandomSampler
from keras.preprocessing.sequence import pad_sequences
from transformers import BertTokenizer, BertForSequenceClassification
from tqdm import trange
from torch.autograd.gradcheck import zero_gradients
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, SequentialSampler
import argparse
from utils import set_seed, load_dataset, cos_dist
import warnings
# warnings.filterwarnings('ignore')
class softCrossEntropy(nn.Module):
def __init__(self, reduce=True):
super(softCrossEntropy, self).__init__()
self.reduce = reduce
return
def forward(self, inputs, target):
"""
:param inputs: predictions
:param target: target labels in vector form
:return: loss
"""
log_likelihood = -F.log_softmax(inputs, dim=1)
sample_num, class_num = target.shape
if self.reduce:
loss = torch.sum(torch.mul(log_likelihood, target)) / sample_num
else:
loss = torch.sum(torch.mul(log_likelihood, target), 1)
return loss
def one_hot_tensor(y_batch_tensor, num_classes, device):
y_tensor = torch.FloatTensor(y_batch_tensor.size(0), num_classes).fill_(0).to(device)
y_tensor[np.arange(len(y_batch_tensor)), y_batch_tensor] = 1.0
return y_tensor
class on_manifold_samples(object):
def __init__(self, epsilon_x=1e-4, epsilon_y=0.1):
super(on_manifold_samples, self).__init__()
self.epsilon_x = epsilon_x
self.epsilon_y = epsilon_y
def generate(self, input_ids, input_mask, y, model):
model.eval()
with torch.no_grad():
if torch.cuda.device_count() > 1:
embedding = model.module.get_input_embeddings()(input_ids)
else:
embedding = model.get_input_embeddings()(input_ids)
x = embedding.detach()
inv_index = torch.arange(x.size(0) - 1, -1, -1).long()
x_tilde = x[inv_index, :].detach()
y_tilde = y[inv_index, :]
x_init = x.detach() + torch.zeros_like(x).uniform_(-self.epsilon_x, self.epsilon_x)
x_init.requires_grad_()
zero_gradients(x_init)
if x_init.grad is not None:
x_init.grad.data.fill_(0)
fea_b = model(inputs_embeds=x_init, token_type_ids=None, attention_mask=input_mask)[1][-1]
fea_b = torch.mean(fea_b, 1)
with torch.no_grad():
fea_t = model(inputs_embeds=x_tilde, token_type_ids=None, attention_mask=input_mask)[1][-1]
fea_t = torch.mean(fea_t, 1)
Dx = cos_dist(fea_b, fea_t)
model.zero_grad()
if torch.cuda.device_count() > 1:
Dx = Dx.mean()
Dx.backward()
x_prime = x_init.data - self.epsilon_x * torch.sign(x_init.grad.data)
x_prime = torch.min(torch.max(x_prime, embedding - self.epsilon_x), embedding + self.epsilon_x)
y_prime = (1 - self.epsilon_y) * y + self.epsilon_y * y_tilde
model.train()
return x_prime.detach(), y_prime.detach()
class off_manifold_samples(object):
def __init__(self, eps=0.001, rand_init='n'):
super(off_manifold_samples, self).__init__()
self.eps = eps
self.rand_init = rand_init
def generate(self, model, input_ids, input_mask, labels):
model.eval()
ny = labels
with torch.no_grad():
if torch.cuda.device_count() > 1:
embedding = model.module.get_input_embeddings()(input_ids)
else:
embedding = model.get_input_embeddings()(input_ids)
input_embedding = embedding.detach()
#random init the adv samples
if self.rand_init == 'y':
input_embedding = input_embedding + torch.zeros_like(input_embedding).uniform_(-self.eps, self.eps)
input_embedding.requires_grad = True
zero_gradients(input_embedding)
if input_embedding.grad is not None:
input_embedding.grad.data.fill_(0)
cost = model(inputs_embeds=input_embedding, token_type_ids=None, attention_mask=input_mask, labels=ny)[0]
if torch.cuda.device_count() > 1:
cost = cost.mean()
model.zero_grad()
cost.backward()
off_samples = input_embedding + self.eps*torch.sign(input_embedding.grad.data)
off_samples = torch.min(torch.max(off_samples, embedding - self.eps), embedding + self.eps)
model.train()
return off_samples.detach()
class ECE(nn.Module):
def __init__(self, n_bins=15):
"""
n_bins (int): number of confidence interval bins
"""
super(ECE, self).__init__()
bin_boundaries = torch.linspace(0, 1, n_bins + 1)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
def forward(self, logits, labels):
softmaxes = F.softmax(logits, dim=1)
confidences, predictions = torch.max(softmaxes, 1)
accuracies = predictions.eq(labels)
ece = torch.zeros(1, device=logits.device)
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
# Calculated |confidence - accuracy| in each bin
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
return ece
# Function to calculate the accuracy of our predictions vs labels
def accurate_nb(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--lr", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--train_batch_size", default=32, type=int, help="Batch size for training.")
parser.add_argument("--eval_batch_size", default=64, type=int, help="Batch size for training.")
parser.add_argument("--epochs", default=10, type=int, help="Number of epochs for training.")
parser.add_argument("--seed", default=0, type=int, help="Number of epochs for training.")
parser.add_argument("--dataset", default='20news', type=str, help="dataset")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--beta_on", default=1., type=float, help="Weight of on manifold reg")
parser.add_argument("--beta_off", default=1., type=float, help="Weight of off manifold reg")
parser.add_argument("--eps_in", default=1e-4, type=float, help="Perturbation size of on-manifold regularizer")
parser.add_argument("--eps_y", default=0.1, type=float, help="Perturbation size of label")
parser.add_argument('--eps_out', default=0.001, type=float, help="Perturbation size of out-of-domain adversarial training")
parser.add_argument('--saved_dataset', type=str, default='y', help='whether save the preprocessed pt file of the dataset') #'n'
args = parser.parse_args()
print(args)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args.device = device
set_seed(args)
ece_criterion = ECE().to(args.device)
soft_ce = softCrossEntropy()
on_manifold = on_manifold_samples(epsilon_x=args.eps_in, epsilon_y=args.eps_y)
off_manifold = off_manifold_samples(eps=args.eps_out)
# load dataset
if args.saved_dataset == 'n':
train_sentences, val_sentences, test_sentences, train_labels, val_labels, test_labels = load_dataset(args.dataset)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
train_input_ids = []
val_input_ids = []
test_input_ids = []
if args.dataset in ['20news', '20news-15', 'trec', 'sst']:
MAX_LEN = 150
else:
MAX_LEN = 256
for sent in train_sentences:
# `encode` will:
# (1) Tokenize the sentence.
# (2) Prepend the `[CLS]` token to the start.
# (3) Append the `[SEP]` token to the end.
# (4) Map tokens to their IDs.
encoded_sent = tokenizer.encode(
sent, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
# This function also supports truncation and conversion
# to pytorch tensors, but we need to do padding, so we
# can't use these features :( .
max_length = MAX_LEN, # Truncate all sentences.
#return_tensors = 'pt', # Return pytorch tensors.
truncation=True
)
# Add the encoded sentence to the list.
train_input_ids.append(encoded_sent)
for sent in val_sentences:
encoded_sent = tokenizer.encode(
sent,
add_special_tokens = True,
max_length = MAX_LEN,
truncation=True
)
val_input_ids.append(encoded_sent)
for sent in test_sentences:
encoded_sent = tokenizer.encode(
sent,
add_special_tokens = True,
max_length = MAX_LEN,
truncation=True
)
test_input_ids.append(encoded_sent)
# Pad our input tokens
train_input_ids = pad_sequences(train_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
val_input_ids = pad_sequences(val_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
test_input_ids = pad_sequences(test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
# Create attention masks
train_attention_masks = []
val_attention_masks = []
test_attention_masks = []
# Create a mask of 1s for each token followed by 0s for padding
for seq in train_input_ids:
seq_mask = [float(i>0) for i in seq]
train_attention_masks.append(seq_mask)
for seq in val_input_ids:
seq_mask = [float(i>0) for i in seq]
val_attention_masks.append(seq_mask)
for seq in test_input_ids:
seq_mask = [float(i>0) for i in seq]
test_attention_masks.append(seq_mask)
# Convert all of our data into torch tensors, the required datatype for our model
train_inputs = torch.tensor(train_input_ids)
validation_inputs = torch.tensor(val_input_ids)
train_labels = torch.tensor(train_labels)
validation_labels = torch.tensor(val_labels)
train_masks = torch.tensor(train_attention_masks)
validation_masks = torch.tensor(val_attention_masks)
test_inputs = torch.tensor(test_input_ids)
test_labels = torch.tensor(test_labels)
test_masks = torch.tensor(test_attention_masks)
# Create an iterator of our data with torch DataLoader.
train_data = TensorDataset(train_inputs, train_masks, train_labels)
validation_data = TensorDataset(validation_inputs, validation_masks, validation_labels)
prediction_data = TensorDataset(test_inputs, test_masks, test_labels)
dataset_dir = 'dataset/{}'.format(args.dataset)
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)
torch.save(train_data, dataset_dir+'/train.pt')
torch.save(validation_data, dataset_dir+'/val.pt')
torch.save(prediction_data, dataset_dir+'/test.pt')
else:
dataset_dir = 'dataset/{}'.format(args.dataset)
train_data = torch.load(dataset_dir+'/train.pt')
validation_data = torch.load(dataset_dir+'/val.pt')
prediction_data = torch.load(dataset_dir+'/test.pt')
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
validation_sampler = SequentialSampler(validation_data)
validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=args.eval_batch_size)
prediction_sampler = SequentialSampler(prediction_data)
prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=args.eval_batch_size)
if args.dataset == '20news':
num_labels = 20
elif args.dataset == 'sst':
num_labels = 2
elif args.dataset == 'trec':
num_labels = 50
print(num_labels)
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels= num_labels, output_hidden_states=True)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
model.to(args.device)
#######train model
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay_rate': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
'weight_decay_rate': 0.0}
]
optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=args.lr, eps=1e-9)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1)
t_total = len(train_dataloader) * args.epochs
# Store our loss and accuracy for plotting
best_val = -np.inf
# trange is a tqdm wrapper around the normal python range
for epoch in trange(args.epochs, desc="Epoch"):
# Training
# Set our model to training mode (as opposed to evaluation mode)
# Tracking variables
tr_loss1, tr_loss2 = 0, 0
nb_tr_examples, nb_tr_steps = 0, 0
model.train()
# Train the data for one epoch
for step, batch in enumerate(train_dataloader):
# Add batch to GPU
batch = tuple(t.to(args.device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# generate on manifold samples
targets_onehot = one_hot_tensor(b_labels, num_labels, args.device)
on_manifold_x, on_manifold_y = on_manifold.generate(b_input_ids, b_input_mask, targets_onehot, model)
model.train()
# train with on manifold samples
on_manifold_logits = model(token_type_ids=None, attention_mask=b_input_mask, inputs_embeds=on_manifold_x)[0]
loss_on = soft_ce(on_manifold_logits, on_manifold_y)
#generate off manifold samples
off_manifold_x = off_manifold.generate(model, b_input_ids, b_input_mask, b_labels)
model.train()
# train with off manifold samples
off_manifold_logits = model(token_type_ids=None, attention_mask=b_input_mask, inputs_embeds=off_manifold_x)[0]
off_manifold_prob = F.softmax(off_manifold_logits, dim=1)
loss_off = -torch.mean(-torch.sum(off_manifold_prob*torch.log(off_manifold_prob), dim=1))
loss_reg = args.beta_on*loss_on + args.beta_off*loss_off
if torch.cuda.device_count() > 1:
loss_reg = loss_reg.mean()
# Clear out the gradients (by default they accumulate)
optimizer.zero_grad()
loss_reg.backward()
loss_ce = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)[0]
if torch.cuda.device_count() > 1:
loss_ce = loss_ce.mean()
loss_ce.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# Update parameters and take a step using the computed gradient
optimizer.step()
# Update tracking variables
tr_loss1 += loss_ce.item()
tr_loss2 += loss_reg.item()
nb_tr_examples += b_input_ids.size(0)
nb_tr_steps += 1
print("Train cross entropy loss: {} | reg loss: {}".format(tr_loss1/nb_tr_steps, tr_loss2/nb_tr_steps))
# Validation
# Put model in evaluation mode to evaluate loss on the validation set
model.eval()
# Tracking variables
eval_accurate_nb = 0
nb_eval_examples = 0
# Evaluate data for one epoch
for batch in validation_dataloader:
# Add batch to GPU
batch = tuple(t.to(args.device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# Telling the model not to compute or store gradients, saving memory and speeding up validation
with torch.no_grad():
# Forward pass, calculate logit predictions
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
tmp_eval_nb = accurate_nb(logits, label_ids)
eval_accurate_nb += tmp_eval_nb
nb_eval_examples += label_ids.shape[0]
eval_accuracy = eval_accurate_nb/nb_eval_examples
print("Validation Accuracy: {}".format(eval_accuracy))
scheduler.step(eval_accuracy)
if eval_accuracy > best_val:
# dirname = '{}/BERT-mf-{}-{}-{}-{}'.format(args.dataset, args.seed, args.eps_in, args.eps_y, args.eps_out)
dirname = '{}/BERT-manifold-smoothing-{}'.format(args.dataset, args.seed)
output_dir = './model_save/{}'.format(dirname)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print("Saving model to %s" % output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir)
#tokenizer.save_pretrained(output_dir)
best_val = eval_accuracy
# ##### test model on test data
# Put model in evaluation mode
model.eval()
# Tracking variables
predictions , true_labels = [], []
eval_accurate_nb = 0
nb_test_examples = 0
logits_list = []
labels_list = []
# Predict
for batch in prediction_dataloader:
# Add batch to GPU
batch = tuple(t.to(args.device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# Telling the model not to compute or store gradients, saving memory and speeding up prediction
with torch.no_grad():
# Forward pass, calculate logit predictions
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]
logits_list.append(logits)
labels_list.append(b_labels)
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
tmp_eval_nb = accurate_nb(logits, label_ids)
eval_accurate_nb += tmp_eval_nb
nb_test_examples += label_ids.shape[0]
# Store predictions and true labels
predictions.append(logits)
true_labels.append(label_ids)
print("Test Accuracy: {}".format(eval_accurate_nb/nb_test_examples))
logits_ece = torch.cat(logits_list)
labels_ece = torch.cat(labels_list)
ece = ece_criterion(logits_ece, labels_ece).item()
print('ECE on test data: {}'.format(ece))
if __name__ == "__main__":
main()