forked from sam-dixon/sncosmo_lc_fits
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_scripts.py
68 lines (57 loc) · 2.23 KB
/
make_scripts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import click
import pickle
SCRIPT_DIR = 'scripts'
if not os.path.isdir(SCRIPT_DIR):
os.makedirs(SCRIPT_DIR)
CURR_DIR = os.path.abspath('./')
DATA_DIR = os.path.join(CURR_DIR, 'data')
DS_NAMES = ['jla', 'csp', 'des', 'foundation', 'ps1', 'all']
TEMPLATE = """#!/bin/bash
#$ -N {dataset}_{start}_{end}
#$ -e {curr_dir}/logs/{dataset}_{start}_{end}.e
#$ -o {curr_dir}/logs/{dataset}_{start}_{end}.o
/home/samdixon/anaconda3/bin/python {curr_dir}/fit_lcs.py {dataset} {start} {end} {no_mc}
"""
def make_scripts(dataset, njobs, no_mc):
data_path = os.path.join(DATA_DIR, '{}_lcs.pkl'.format(dataset))
with open(data_path, 'rb') as f:
data = pickle.load(f)
n_sne = len(data)
if not no_mc:
submit_fname = 'submit_{}_mcmc.sh'.format(dataset)
else:
submit_fname = 'submit_{}.sh'.format(dataset)
submit_script_path = os.path.join(SCRIPT_DIR, submit_fname)
with open(submit_script_path, 'w') as subf:
for script_id in range(njobs):
start = int(n_sne / njobs * script_id)
end = int(n_sne / njobs * (script_id + 1))
if not no_mc:
script_fname = '{}_{}_{}_mcmc.sh'.format(dataset, start, end)
else:
script_fname = '{}_{}_{}.sh'.format(dataset, start, end)
script_path = os.path.join(SCRIPT_DIR, script_fname)
with open(script_path, 'w') as f:
f.write(TEMPLATE.format(dataset=dataset,
start=start,
end=end,
curr_dir=CURR_DIR,
no_mc='--no_mc' if no_mc else ''))
os.chmod(script_path, 0o755)
subf.write('qsub {}\n'.format(os.path.abspath(script_path)))
os.chmod(submit_script_path, 0o755)
@click.command()
@click.argument('dataset', type=click.Choice(DS_NAMES))
@click.argument('njobs', type=int)
@click.option('--no_mc', is_flag=True)
def main(dataset, njobs, no_mc):
if dataset == 'all':
for ds in DS_NAMES:
if ds == 'all':
continue
make_scripts(ds, njobs, no_mc)
else:
make_scripts(dataset, njobs, no_mc)
if __name__ == '__main__':
main()