-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain_func_cross_domain.py
276 lines (206 loc) · 8.57 KB
/
train_func_cross_domain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
"""
Copyright Snap Inc. 2021. This sample code is made available by Snap Inc. for informational purposes only.
No license, whether implied or otherwise, is granted in or to such code (including any rights to copy, modify,
publish, distribute and/or commercialize such code), unless you have entered into a separate agreement for such rights.
Such code is provided as-is, without warranty of any kind, express or implied, including any warranties of merchantability,
title, fitness for a particular purpose, non-infringement, or that such code is free of defects, errors or viruses.
In no event will Snap Inc. be liable for any damages or losses of any kind arising from the sample code or your use thereof.
"""
import random
import numpy as np
import torch
import torch.nn.functional as F
from models import losses
def warp_with_flip_batch(x):
out = []
for ii in range(x.shape[0]):
out.append(warp_with_flip(x[ii]))
return torch.cat(out, dim=0)
def warp_with_flip(x):
num = random.randint(0, 1)
if num == 1:
return torch.flip(x, [-1]).unsqueeze(0)
else:
return x.unsqueeze(0)
def warp_with_color_batch(x):
out = []
for ii in range(x.shape[0]):
out.append(warp_with_color(x[ii]))
return torch.cat(out, dim=0)
def warp_with_color(x):
c_shift = torch.rand(1) - 0.5
c_shift = c_shift.cuda(x.get_device())
m = torch.zeros_like(x)
m = m.cuda(x.get_device())
num = random.randint(0, 3)
if num == 0:
m.data += c_shift
elif num == 1:
m[0].data += c_shift
elif num == 2:
m[1].data += c_shift
else:
m[2].data += c_shift
out = x + m
return out.unsqueeze(0)
def warp_with_cutout_batch_real(x):
out = []
for ii in range(x.shape[0]):
out.append(warp_with_cutout_real(x[ii]))
return torch.cat(out, dim=0)
def warp_with_cutout_real(x, max_ratio=0.25):
c, h, w = x.size()
m = np.ones((c, h, w), np.float32)
ratio = random.uniform(max_ratio / 2, max_ratio)
num = random.randint(0, 3)
if num == 0:
h_start = random.uniform(0, max_ratio - ratio)
w_start = random.uniform(0, 1 - max_ratio)
elif num == 1:
h_start = random.uniform(1 - max_ratio, 1 - ratio)
w_start = random.uniform(0, 1 - max_ratio)
elif num == 2:
w_start = random.uniform(0, max_ratio - ratio)
h_start = random.uniform(0, 1 - max_ratio)
else:
w_start = random.uniform(1 - max_ratio, 1 - ratio)
h_start = random.uniform(0, 1 - max_ratio)
h_s = round(h_start * (h - 1) - 0.5)
w_s = round(w_start * (w - 1) - 0.5)
length = round(h * ratio - 0.5)
m[:, h_s:h_s + length, w_s:w_s + length] = 0.
m = torch.from_numpy(m).cuda(x.get_device())
out = x * m
return out.unsqueeze(0)
def warp_with_affine(x, angle=180, trans=0.1, scale=0.05):
angle = np.pi * angle / 180.
pa = torch.FloatTensor(4)
th = torch.FloatTensor(2, 3)
pa[0].uniform_(-angle, angle)
pa[1].uniform_(-trans, trans)
pa[2].uniform_(-trans, trans)
pa[3].uniform_(1. - scale, 1. + scale)
th[0][0] = pa[3] * torch.cos(pa[0])
th[0][1] = pa[3] * torch.sin(-pa[0])
th[0][2] = pa[1]
th[1][0] = pa[3] * torch.sin(pa[0])
th[1][1] = pa[3] * torch.cos(pa[0])
th[1][2] = pa[2]
x = x.unsqueeze(0)
th = th.unsqueeze(0)
grid = F.affine_grid(th, x.size()).cuda(x.get_device())
out = F.grid_sample(x, grid, padding_mode="reflection")
return out
def warp(x):
out = warp_with_cutout_batch_real(x)
out_list = []
for ii in range(out.shape[0]):
num = random.randint(0, 2)
if num == 0:
out_list.append(warp_with_flip(out[ii]))
elif num == 1:
out_list.append(warp_with_color(out[ii]))
else:
out_list.append(warp_with_affine(out[ii]))
return torch.cat(out_list, dim=0)
def flip_video(x):
num = random.randint(0, 1)
if num == 0:
return torch.flip(x, [2])
else:
return x
def toggle_grad(model, on_or_off):
for param in model.parameters():
param.required_grad = on_or_off
def D_step(opt, modelG, modelD_img, modelD_3d, x, z):
z.data.normal_()
x_fake, _, _ = modelG([z], opt.n_frames_G, use_noise=True)
x_fake = x_fake.view(opt.batchSize, opt.n_frames_G, opt.nc,
opt.style_gan_size, opt.style_gan_size)
kernel_size = int(opt.style_gan_size / opt.video_frame_size)
x_fake = F.avg_pool3d(x_fake, (1, kernel_size, kernel_size))
x_in = x
x_fake_in = x_fake
D_fake_3d = modelD_3d(flip_video(
torch.transpose(x_fake_in, 1, 2).detach()))
D_real_3d = modelD_3d(flip_video(torch.transpose(x_in, 1, 2)))
criterionGAN = losses.Relativistic_Average_LSGAN()
D_loss_real_3d = criterionGAN(D_real_3d, D_fake_3d, True)
D_loss_fake_3d = criterionGAN(D_fake_3d, D_real_3d, False)
D_loss_3d = (D_loss_real_3d + D_loss_fake_3d) * 0.5
loss_GP_3d = losses.compute_gradient_penalty_T(
torch.transpose(x_in, 1, 2), torch.transpose(x_fake_in, 1, 2),
modelD_3d, opt)
D_loss_3d += loss_GP_3d
modelD_3d.module.optim.zero_grad()
D_loss_3d.backward(retain_graph=True)
modelD_3d.module.optim.step()
real_id = random.randint(1, opt.n_frames_G - 1)
fake_id = random.randint(1, opt.n_frames_G - 1)
aug_real2 = warp(torch.tensor(x_fake[:, 0]))
aug_real = warp(x_fake[:, 0])
aug_fake2 = warp(torch.tensor(x_fake[:, fake_id]))
aug_fake = warp(x_fake[:, fake_id])
D_real, logits_real = modelD_img(aug_real.detach())
D_real2, logits_real2 = modelD_img(aug_real2.detach())
D_fake, logits_fake = modelD_img(aug_fake.detach())
D_fake2, logits_fake2 = modelD_img(aug_fake2.detach())
cntr_loss = modelD_img.module.get_cntr_loss_cross_domain(
logits_real, logits_real2, logits_fake, logits_fake2)
D_loss_real, D_loss_fake = losses.loss_hinge_dis(D_fake, D_real)
D_loss = (D_loss_real + D_loss_fake) / 1. + 2. * cntr_loss
modelD_img.module.optim.zero_grad()
D_loss.backward()
modelD_img.module.optim.step()
with torch.no_grad():
modelD_img.module._momentum_update_dis()
return D_loss_real.item(), D_loss_fake.item(), D_loss_real_3d.item(
), D_loss_fake_3d.item(), cntr_loss.item()
def G_step(opt, modelG, modelD_img, modelD_3d, x, z):
z.data.normal_()
x_fake, rand_in, rand_rec = modelG([z], opt.n_frames_G, use_noise=True)
x_fake = x_fake.view(opt.batchSize, opt.n_frames_G, 3, opt.style_gan_size,
opt.style_gan_size)
kernel_size = int(opt.style_gan_size / opt.video_frame_size)
x_fake = F.avg_pool3d(x_fake, (1, kernel_size, kernel_size))
l_mutual = -torch.mean(F.cosine_similarity(rand_rec, rand_in.detach()))
fake_id = random.randint(1, opt.n_frames_G - 1)
warped_fake = warp(x_fake[:, fake_id])
warped_real = warp(x_fake[:, 0])
with torch.no_grad():
logits_real = modelD_img(warped_real, ema=True, proj_only=True)
logits_fake = modelD_img(warped_fake, ema=True, proj_only=True)
modelD_img.module.update_memory_bank(logits_real, logits_fake)
D_fake, l_fake = modelD_img(warped_fake)
D_real, l_real = modelD_img(warped_real)
cos_sim = F.cosine_similarity(l_fake, l_real)
l_match = -cos_sim.mean()
G_loss_2d = losses.loss_hinge_gen(D_fake)
x_in = x
x_fake_in = x_fake
D_real_3d = modelD_3d(flip_video(torch.transpose(x_in, 1, 2)))
D_fake_3d = modelD_3d(flip_video(torch.transpose(x_fake_in, 1, 2)))
criterionGAN = losses.Relativistic_Average_LSGAN()
G_loss_3d = (criterionGAN(D_fake_3d, D_real_3d, True) +
criterionGAN(D_real_3d, D_fake_3d, False)) * 0.5
G_loss = G_loss_3d + G_loss_2d + opt.w_match * l_match + l_mutual
modelG.module.modelR.optim.zero_grad()
G_loss.backward()
modelG.module.modelR.optim.step()
return G_loss_2d.item(), G_loss_3d.item(), l_match.item(), l_mutual.item()
def GD_step(opt, modelG, modelD_img, modelD_3d, data, x, z):
x.data.copy_(data['real_img'])
for i in range(opt.G_step):
G_loss, G_loss_3d, l_match, l_mutual = G_step(opt, modelG, modelD_img,
modelD_3d, x, z)
D_loss_real, D_loss_fake, D_loss_real_3d, D_loss_fake_3d, cntr_loss_D = D_step(
opt, modelG, modelD_img, modelD_3d, x, z)
loss_names = [
'D_real', 'D_fake', 'D_real_3d', 'D_fake_3d', 'cntr_D', 'G', 'G_3d',
'l_match', 'l_mutual'
]
loss_all = [
D_loss_real, D_loss_fake, D_loss_real_3d, D_loss_fake_3d, cntr_loss_D,
G_loss, G_loss_3d, l_match, l_mutual
]
return loss_all, loss_names