-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcount.py
74 lines (60 loc) · 2.09 KB
/
count.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from math import log
OVERHEAD_BITS = 2
def binom(n,k):
a = 1
for m in range(1,k+1):
a = a*(n-k+m)/m
return a
def rank_combination(cs, k):
a = 0;
for i in range(k):
a += binom(cs[i], i+1)
return a
def solve_size(total, bpe):
assert bpe%8 == 0
bits = bpe/8
# total / 2^(bits-OVERHEAD_BITS) = 2^bits
# => 2^bits * 2^(bits-OVERHEAD_BITS) = total
# => 2^(2*bits-OVERHEAD_BITS) = total
# => 2*bits-OVERHEAD_BITS = log(total)
# => bits = (log(total)-OVERHEAD_BITS)/2
def count_boards(N):
total = 0
itotal = 0
assert N >= 4
NUM_ISQ = N*(N-2)
print 'Possible %dx%x boards with a+b pawns:\n' % (N,N)
FORMAT='%-5s %-11f %-18d %-8.5f %-18d'
FORMAT_S='%-5s %-11s %-18s %-8s %-18s'
HEADER = FORMAT_S % ('a+b', 'stupid_bits', 'stupid_count', 'int_bits', 'int_count')
print HEADER
print '-'*len(HEADER)
for a in range(1,N+1):
for b in range(1,N+1):
count = binom(NUM_ISQ, a) * binom(NUM_ISQ, b)
total += count
icount = binom(NUM_ISQ, a) * binom(NUM_ISQ-a, b)
itotal += icount
print FORMAT % ('%d+%d' % (a,b),
log(count)/log(2), count,
log(icount)/log(2), icount)
print '-'*len(HEADER)
print FORMAT % ('TOTAL', log(total)/log(2), total, log(icount)/log(2), itotal)
print
print 'TP table sizes for n bits/element:'
print
print ' Stupid | Intelligent '
print 'bits/e size size (GiB) | size size (GiB)'
print '--------------------------------------------+-----------------------------------'
FORMAT = '%-7d %-21d %-11.1f | %-21d %-11.1f'
for be in [1,2,3,4,5,6,7]:
BITS = be*8-OVERHEAD_BITS
# total/size < 2^bits
# => size = total/2^bits
s = total/2.0**BITS
si = itotal/2.0**BITS
print FORMAT % (BITS, s, s*be/2**30, si, si*be/2**30)
def main():
count_boards(8)
if __name__ == '__main__':
main()