forked from facebookresearch/fairseq
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
294 lines (243 loc) · 11.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#!/usr/bin/env python3
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#
import collections
import os
import torch
import math
from fairseq import data, options, utils
from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter
from fairseq.multiprocessing_trainer import MultiprocessingTrainer
def main():
parser = options.get_parser('Trainer')
dataset_args = options.add_dataset_args(parser)
dataset_args.add_argument('--max-tokens', default=6000, type=int, metavar='N',
help='maximum number of tokens in a batch')
dataset_args.add_argument('--max-sentences', type=int, metavar='N',
help='maximum number of sentences in a batch')
dataset_args.add_argument('--train-subset', default='train', metavar='SPLIT',
choices=['train', 'valid', 'test'],
help='data subset to use for training (train, valid, test)')
dataset_args.add_argument('--valid-subset', default='valid', metavar='SPLIT',
help='comma separated list of data subsets '
' to use for validation (train, valid, valid1,test, test1)')
dataset_args.add_argument('--max-sentences-valid', type=int, metavar='N',
help='maximum number of sentences in a validation batch')
options.add_optimization_args(parser)
options.add_checkpoint_args(parser)
options.add_model_args(parser)
args = utils.parse_args_and_arch(parser)
if args.no_progress_bar and args.log_format is None:
args.log_format = 'simple'
if args.max_sentences_valid is None:
args.max_sentences_valid = args.max_sentences
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
torch.manual_seed(args.seed)
# Load dataset
splits = ['train', 'valid']
if data.has_binary_files(args.data, splits):
dataset = data.load_dataset(args.data, splits, args.source_lang, args.target_lang)
else:
dataset = data.load_raw_text_dataset(args.data, splits, args.source_lang, args.target_lang)
if args.source_lang is None or args.target_lang is None:
# record inferred languages in args, so that it's saved in checkpoints
args.source_lang, args.target_lang = dataset.src, dataset.dst
if not torch.cuda.is_available():
raise NotImplementedError('Training on CPU is not supported')
args.num_gpus = torch.cuda.device_count()
print(args)
print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
for split in splits:
print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))
print('| using {} GPUs (with max tokens per GPU = {} and max sentences per GPU = {})'.format(
args.num_gpus, args.max_tokens, args.max_sentences))
# Build model and criterion
model = utils.build_model(args, dataset.src_dict, dataset.dst_dict)
criterion = utils.build_criterion(args, dataset.src_dict, dataset.dst_dict)
print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
print('| num. model params: {}'.format(sum(p.data.numel() for p in model.parameters())))
# The max number of positions can be different for train and valid
# e.g., RNNs may support more positions at test time than seen in training
max_positions_train = (
min(args.max_source_positions, model.max_encoder_positions()),
min(args.max_target_positions, model.max_decoder_positions())
)
max_positions_valid = (model.max_encoder_positions(), model.max_decoder_positions())
# Start multiprocessing
trainer = MultiprocessingTrainer(args, model, criterion)
# Load the latest checkpoint if one is available
checkpoint_path = os.path.join(args.save_dir, args.restore_file)
extra_state = trainer.load_checkpoint(checkpoint_path)
if extra_state is not None:
epoch = extra_state['epoch']
batch_offset = extra_state['batch_offset']
print('| loaded checkpoint {} (epoch {})'.format(checkpoint_path, epoch))
if batch_offset == 0:
epoch += 1
else:
epoch, batch_offset = 1, 0
# Train until the learning rate gets too small
val_loss = None
max_epoch = args.max_epoch or math.inf
lr = trainer.get_lr()
train_meter = StopwatchMeter()
train_meter.start()
while lr > args.min_lr and epoch <= max_epoch:
# train for one epoch
train(args, epoch, batch_offset, trainer, dataset, max_positions_train)
# evaluate on validate set
for k, subset in enumerate(args.valid_subset.split(',')):
val_loss = validate(args, epoch, trainer, dataset, max_positions_valid, subset)
if k == 0:
if not args.no_save:
# save checkpoint
save_checkpoint(trainer, args, epoch, 0, val_loss)
# only use first validation loss to update the learning schedule
lr = trainer.lr_step(val_loss, epoch)
epoch += 1
batch_offset = 0
train_meter.stop()
print('| done training in {:.1f} seconds'.format(train_meter.sum))
# Stop multiprocessing
trainer.stop()
def get_perplexity(loss):
try:
return round(math.pow(2, loss), 2)
except OverflowError:
return float('inf')
def train(args, epoch, batch_offset, trainer, dataset, max_positions):
"""Train the model for one epoch."""
seed = args.seed + epoch
torch.manual_seed(seed)
trainer.set_seed(seed)
itr = dataset.train_dataloader(
args.train_subset, num_workers=args.workers,
max_tokens=args.max_tokens, max_sentences=args.max_sentences,
max_positions=max_positions, seed=seed, epoch=epoch,
sample_without_replacement=args.sample_without_replacement,
sort_by_source_size=(epoch <= args.curriculum))
loss_meter = AverageMeter()
nll_loss_meter = AverageMeter()
bsz_meter = AverageMeter() # sentences per batch
wpb_meter = AverageMeter() # words per batch
wps_meter = TimeMeter() # words per second
clip_meter = AverageMeter() # % of updates clipped
extra_meters = collections.defaultdict(lambda: AverageMeter())
lr = trainer.get_lr()
with utils.build_progress_bar(args, itr, epoch) as t:
for i, sample in data.skip_group_enumerator(t, args.num_gpus, batch_offset):
loss_dict = trainer.train_step(sample)
loss = loss_dict['loss']
del loss_dict['loss'] # don't include in extra_meters or extra_postfix
ntokens = sum(s['ntokens'] for s in sample)
if 'nll_loss' in loss_dict:
nll_loss = loss_dict['nll_loss']
nll_loss_meter.update(nll_loss, ntokens)
nsentences = sum(s['net_input']['src_tokens'].size(0) for s in sample)
loss_meter.update(loss, nsentences if args.sentence_avg else ntokens)
bsz_meter.update(nsentences)
wpb_meter.update(ntokens)
wps_meter.update(ntokens)
clip_meter.update(1 if loss_dict['gnorm'] > args.clip_norm else 0)
extra_postfix = []
for k, v in loss_dict.items():
extra_meters[k].update(v)
extra_postfix.append((k, extra_meters[k].avg))
t.log(collections.OrderedDict([
('loss', loss_meter),
('wps', round(wps_meter.avg)),
('wpb', round(wpb_meter.avg)),
('bsz', round(bsz_meter.avg)),
('lr', lr),
('clip', '{:.0%}'.format(clip_meter.avg)),
] + extra_postfix))
if i == 0:
# ignore the first mini-batch in words-per-second calculation
wps_meter.reset()
if args.save_interval > 0 and (i + 1) % args.save_interval == 0:
save_checkpoint(trainer, args, epoch, i + 1)
t.print(collections.OrderedDict([
('train loss', round(loss_meter.avg, 2)),
('train ppl', get_perplexity(nll_loss_meter.avg
if nll_loss_meter.count > 0
else loss_meter.avg)),
('s/checkpoint', round(wps_meter.elapsed_time)),
('words/s', round(wps_meter.avg)),
('words/batch', round(wpb_meter.avg)),
('bsz', round(bsz_meter.avg)),
('lr', lr),
('clip', '{:3.0f}%'.format(clip_meter.avg * 100)),
] + [
(k, meter.avg)
for k, meter in extra_meters.items()
]))
def save_checkpoint(trainer, args, epoch, batch_offset, val_loss):
extra_state = {
'epoch': epoch,
'batch_offset': batch_offset,
'val_loss': val_loss,
}
if batch_offset == 0:
if not args.no_epoch_checkpoints:
epoch_filename = os.path.join(args.save_dir, 'checkpoint{}.pt'.format(epoch))
trainer.save_checkpoint(epoch_filename, extra_state)
assert val_loss is not None
if not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best:
save_checkpoint.best = val_loss
best_filename = os.path.join(args.save_dir, 'checkpoint_best.pt')
trainer.save_checkpoint(best_filename, extra_state)
elif not args.no_epoch_checkpoints:
epoch_filename = os.path.join(
args.save_dir, 'checkpoint{}_{}.pt'.format(epoch, batch_offset))
trainer.save_checkpoint(epoch_filename, extra_state)
last_filename = os.path.join(args.save_dir, 'checkpoint_last.pt')
trainer.save_checkpoint(last_filename, extra_state)
def validate(args, epoch, trainer, dataset, max_positions, subset):
"""Evaluate the model on the validation set and return the average loss."""
itr = dataset.eval_dataloader(
subset, max_tokens=args.max_tokens, max_sentences=args.max_sentences_valid,
max_positions=max_positions,
skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test,
descending=True, # largest batch first to warm the caching allocator
)
loss_meter = AverageMeter()
nll_loss_meter = AverageMeter()
extra_meters = collections.defaultdict(lambda: AverageMeter())
prefix = 'valid on \'{}\' subset'.format(subset)
with utils.build_progress_bar(args, itr, epoch, prefix) as t:
for _, sample in data.skip_group_enumerator(t, args.num_gpus):
loss_dict = trainer.valid_step(sample)
ntokens = sum(s['ntokens'] for s in sample)
loss = loss_dict['loss']
del loss_dict['loss'] # don't include in extra_meters or extra_postfix
if 'nll_loss' in loss_dict:
nll_loss = loss_dict['nll_loss']
nll_loss_meter.update(nll_loss, ntokens)
loss_meter.update(loss, ntokens)
extra_postfix = []
for k, v in loss_dict.items():
extra_meters[k].update(v)
extra_postfix.append((k, extra_meters[k].avg))
t.log(collections.OrderedDict([
('valid loss', round(loss_meter.avg, 2)),
] + extra_postfix))
t.print(collections.OrderedDict([
('valid loss', round(loss_meter.avg, 2)),
('valid ppl', get_perplexity(nll_loss_meter.avg
if nll_loss_meter.count > 0
else loss_meter.avg)),
] + [
(k, meter.avg)
for k, meter in extra_meters.items()
]))
# update and return the learning rate
return loss_meter.avg
if __name__ == '__main__':
main()