-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
46 lines (34 loc) · 1.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
import pandas as pd
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from mgwr import *
from mgwr.tests.data import *
if __name__ == '__main__':
results_table = pd.DataFrame(columns=['data', 'nSample', 'nVariate', 'mode', 'neighborType', 'kernel', 'method',
'time', 'AICc', 'iteration', 'bandwidth', 'message'])
test_output_dir = os.path.join(os.path.dirname(__file__), "test_output")
# test_output_dir = r"C:\temp"
output_file = os.path.join(test_output_dir, r"main"+ str(np.random.random()) +".csv")
x, y, coords, data_path = get_perlin_data_set_0_n_1000_k_10(nx=11)
for mode_ in ["mgwr"]:
for neighbor_type_ in ["neighbor"]: #["neighbor", "distance"]
for kernel_type_ in ["bisquare"]: #["gaussian", "bisquare"]
for gwr_init_ in [True]: #[False, True]
if mode_ == "gwr" and gwr_init_ == True:
continue
md = MGWR(x, y, coords, neighbor_type=neighbor_type_, kernel=kernel_type_,
mode=mode_, disp=True, gwr_init=gwr_init_, data_path=data_path,
scale_coordinate=True)
# md.newton(hess=False)
# md.scipy_optimize(method="L-BFGS-B")
# md.scipy_optimize(method="TNC")
md.scipy_optimize(method="trust-constr")
# these two function no longer work after using numba
# md.newton(hess=True)
# md.pysal_exec()
md.outputResults["gwr_init"] = gwr_init_
results_table = results_table.append(md.outputResults)
results_table.to_csv(output_file)
print("output file is: ", output_file)