-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgoogle-colab-mnist1
34 lines (27 loc) · 1016 Bytes
/
google-colab-mnist1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# YOUR CODE SHOULD START HERE
import tensorflow as tf
mnist = tf.keras.datasets.mnist
class myCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self,epoch,logs={}):
if(logs.get('acc')>0.99):
print("Reached 99% accuracy so cancelling training!")
self.model.stop_training = True
# YOUR CODE SHOULD END HERE
#import tensorflow as tf
#mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
# YOUR CODE SHOULD START HERE
x_train , x_test = x_train/255.0 , x_test/255.0
callbacks = myCallback()
# YOUR CODE SHOULD END HERE
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation = tf.nn.relu),
tf.keras.layers.Dense(10, activation = tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# YOUR CODE SHOULD START HERE
model.fit(x_train, y_train, epochs = 10 , callbacks = [callbacks])
# YOUR CODE SHOULD END HERE