-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathlgr_physics.cpp
1170 lines (1120 loc) · 44.6 KB
/
lgr_physics.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <cassert>
#include <hpc_macros.hpp>
#include <hpc_symmetric3x3.hpp>
#include <iomanip>
#include <iostream>
#include <j2/hardening.hpp>
#include <lgr_adapt.hpp>
#include <lgr_element_specific.hpp>
#include <lgr_exodus.hpp>
#include <lgr_input.hpp>
#include <lgr_meshing.hpp>
#include <lgr_physics.hpp>
#include <lgr_physics_util.hpp>
#include <lgr_print.hpp>
#include <lgr_stabilized.hpp>
#include <lgr_state.hpp>
#include <lgr_vtk.hpp>
#include <otm_materials.hpp>
namespace lgr {
HPC_NOINLINE inline void
advance_time(
input const& in,
hpc::time<double> const max_stable_dt,
hpc::time<double> const next_file_output_time,
hpc::time<double>* time,
hpc::time<double>* dt)
{
auto const old_time = *time;
auto new_time = next_file_output_time;
new_time = std::min(new_time, old_time + (max_stable_dt * in.CFL));
*time = new_time;
*dt = new_time - old_time;
}
HPC_NOINLINE inline void
update_u(state& s, hpc::time<double> const dt)
{
auto const nodes_to_u = s.u.begin();
auto const nodes_to_v = s.v.cbegin();
auto functor = [=] HPC_DEVICE(node_index const node) {
auto const old_u = nodes_to_u[node].load();
auto const v = nodes_to_v[node].load();
auto const u = (dt * v) - old_u;
nodes_to_u[node] = u;
};
hpc::for_each(hpc::device_policy(), s.nodes, functor);
}
HPC_NOINLINE inline void
explicit_newmark_predict(state& s, hpc::time<double> const dt)
{
auto const nodes_to_u = s.u.begin();
auto const nodes_to_v = s.v.begin();
auto const nodes_to_a = s.a.cbegin();
auto functor = [=] HPC_DEVICE(node_index const node) {
auto const u = nodes_to_u[node].load();
auto const v = nodes_to_v[node].load();
auto const a = nodes_to_a[node].load();
auto const vp = 0.5 * dt * a;
auto const u_pred = u + (dt * v) + (dt * vp);
auto const v_pred = v + vp;
nodes_to_u[node] = u_pred;
nodes_to_v[node] = v_pred;
};
hpc::for_each(hpc::device_policy(), s.nodes, functor);
}
HPC_NOINLINE inline void
explicit_newmark_correct(state& s, hpc::time<double> const dt)
{
auto const nodes_to_u = s.u.begin();
auto const nodes_to_v = s.v.begin();
auto const nodes_to_a = s.a.cbegin();
auto functor = [=] HPC_DEVICE(node_index const node) {
auto const u = nodes_to_u[node].load();
auto const v = nodes_to_v[node].load();
auto const a = nodes_to_a[node].load();
auto const vp = dt * a;
auto const u_corr = u + (dt * vp);
auto const v_corr = v + vp;
nodes_to_u[node] = u_corr;
nodes_to_v[node] = v_corr;
};
hpc::for_each(hpc::device_policy(), s.nodes, functor);
}
HPC_NOINLINE inline void
update_v(
state& s,
hpc::time<double> const dt,
hpc::device_array_vector<hpc::velocity<double>, node_index> const& old_v_vector)
{
auto const nodes_to_v = s.v.begin();
auto const nodes_to_old_v = old_v_vector.cbegin();
auto const nodes_to_a = s.a.cbegin();
auto functor = [=] HPC_DEVICE(node_index const node) {
auto const old_v = nodes_to_old_v[node].load();
auto const a = nodes_to_a[node].load();
auto const v = old_v + dt * a;
nodes_to_v[node] = v;
};
hpc::for_each(hpc::device_policy(), s.nodes, functor);
}
HPC_NOINLINE inline void
update_a(state& s)
{
auto const nodes_to_f = s.f.cbegin();
auto const nodes_to_m = s.mass.cbegin();
auto const nodes_to_a = s.a.begin();
auto functor = [=] HPC_DEVICE(node_index const node) {
auto const f = nodes_to_f[node].load();
auto const m = nodes_to_m[node];
auto const a = f / m;
nodes_to_a[node] = a;
};
hpc::for_each(hpc::device_policy(), s.nodes, functor);
}
HPC_NOINLINE inline void
update_x(state& s)
{
auto const nodes_to_u = s.u.cbegin();
auto const nodes_to_x = s.x.begin();
auto functor = [=] HPC_DEVICE(node_index const node) {
auto const old_x = nodes_to_x[node].load();
auto const u = nodes_to_u[node].load();
auto const new_x = old_x + u;
nodes_to_x[node] = new_x;
};
hpc::for_each(hpc::device_policy(), s.nodes, functor);
}
HPC_NOINLINE inline void
update_p(state& s, material_index const material)
{
auto const points_to_sigma = s.sigma.cbegin();
auto const points_to_p = s.p.begin();
auto const elements_to_points = s.elements * s.points_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
for (auto const point : elements_to_points[element]) {
auto const sigma = points_to_sigma[point].load();
auto const p = -(1.0 / 3.0) * trace(sigma);
points_to_p[point] = p;
}
};
hpc::for_each(hpc::device_policy(), s.element_sets[material], functor);
}
HPC_NOINLINE inline void
update_reference(state& s)
{
auto const elements_to_element_nodes = s.elements * s.nodes_in_element;
auto const elements_to_element_points = s.elements * s.points_in_element;
auto const points_to_point_nodes = s.points * s.nodes_in_element;
auto const element_nodes_to_nodes = s.elements_to_nodes.cbegin();
auto const nodes_to_u = s.u.cbegin();
auto const points_to_F_total = s.F_total.begin();
auto const point_nodes_to_grad_N = s.grad_N.begin();
auto const points_to_V = s.V.begin();
auto const points_to_rho = s.rho.begin();
auto const nodes_in_element = s.nodes_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
auto const element_nodes = elements_to_element_nodes[element];
auto const element_points = elements_to_element_points[element];
for (auto const point : element_points) {
auto const point_nodes = points_to_point_nodes[point];
auto F_incr = hpc::deformation_gradient<double>::identity();
for (auto const node_in_element : nodes_in_element) {
auto const element_node = element_nodes[node_in_element];
auto const point_node = point_nodes[node_in_element];
auto const node = element_nodes_to_nodes[element_node];
auto const u = nodes_to_u[node].load();
auto const old_grad_N = point_nodes_to_grad_N[point_node].load();
F_incr = F_incr + outer_product(u, old_grad_N);
}
auto const F_inverse_transpose = transpose(inverse(F_incr));
for (auto const point_node : point_nodes) {
auto const old_grad_N = point_nodes_to_grad_N[point_node].load();
auto const new_grad_N = F_inverse_transpose * old_grad_N;
point_nodes_to_grad_N[point_node] = new_grad_N;
}
auto const old_F_total = points_to_F_total[point].load();
auto const new_F_total = F_incr * old_F_total;
points_to_F_total[point] = new_F_total;
auto const J = determinant(F_incr);
assert(J > 0.0);
auto const old_V = points_to_V[point];
auto const new_V = J * old_V;
assert(new_V > 0.0);
points_to_V[point] = new_V;
auto const old_rho = points_to_rho[point];
auto const new_rho = old_rho / J;
points_to_rho[point] = new_rho;
}
};
hpc::for_each(hpc::device_policy(), s.elements, functor);
}
HPC_NOINLINE inline void
update_element_dt(state& s)
{
auto const points_to_c = s.c.cbegin();
auto const elements_to_h_min = s.h_min.cbegin();
auto const points_to_nu_art = s.nu_art.cbegin();
auto const points_to_dt = s.element_dt.begin();
auto const elements_to_points = s.elements * s.points_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
auto const h_min = elements_to_h_min[element];
for (auto const point : elements_to_points[element]) {
auto const c = points_to_c[point];
auto const nu_art = points_to_nu_art[point];
auto const h_sq = h_min * h_min;
auto const c_sq = c * c;
auto const nu_art_sq = nu_art * nu_art;
auto const dt = h_sq / (nu_art + sqrt(nu_art_sq + (c_sq * h_sq)));
assert(dt > 0.0);
points_to_dt[point] = dt;
}
};
hpc::for_each(hpc::device_policy(), s.elements, functor);
}
HPC_NOINLINE inline void
neo_Hookean(input const& in, state& s, material_index const material)
{
auto const points_to_F_total = s.F_total.cbegin();
auto const points_to_sigma = s.sigma.begin();
auto const points_to_K = s.K.begin();
auto const points_to_G = s.G.begin();
auto const K0 = in.K0[material];
auto const G0 = in.G0[material];
auto const elements_to_points = s.elements * s.points_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
for (auto const point : elements_to_points[element]) {
auto const F = points_to_F_total[point].load();
auto const J = determinant(F);
auto const Jinv = 1.0 / J;
auto const half_K0 = 0.5 * K0;
auto const Jm13 = 1.0 / cbrt(J);
auto const Jm23 = Jm13 * Jm13;
auto const Jm53 = (Jm23 * Jm23) * Jm13;
auto const B = self_times_transpose(F);
auto const devB = deviatoric_part(B);
auto const sigma = half_K0 * (J - Jinv) + (G0 * Jm53) * devB;
points_to_sigma[point] = sigma;
auto const K = half_K0 * (J + Jinv);
points_to_K[point] = K;
points_to_G[point] = G0;
}
};
hpc::for_each(hpc::device_policy(), s.element_sets[material], functor);
}
HPC_NOINLINE inline void
variational_J2(input const& in, state& s, material_index const material)
{
auto const dt = s.dt;
auto const points_to_F_total = s.F_total.cbegin();
auto const points_to_sigma = s.sigma.begin();
auto const points_to_K = s.K.begin();
auto const points_to_G = s.G.begin();
auto const points_to_Fp = s.Fp_total.begin();
auto const points_to_ep = s.ep.begin();
auto const K = in.K0[material];
auto const G = in.G0[material];
auto const Y0 = in.Y0[material];
auto const n = in.n[material];
auto const eps0 = in.eps0[material];
auto const Svis0 = in.Svis0[material];
auto const m = in.m[material];
auto const eps_dot0 = in.eps_dot0[material];
auto const elements_to_points = s.elements * s.points_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
for (auto const point : elements_to_points[element]) {
auto const F = points_to_F_total[point].load();
auto sigma_full = hpc::stress<double>::zero();
auto Keff = hpc::pressure<double>(0.0);
auto Geff = hpc::pressure<double>(0.0);
auto W = hpc::energy_density<double>(0.0);
j2::Properties props{K, G, Y0, n, eps0, Svis0, m, eps_dot0};
auto Fp = points_to_Fp[point].load();
auto ep = points_to_ep[point];
variational_J2_point(F, props, dt, sigma_full, Keff, Geff, W, Fp, ep);
auto const sigma = hpc::symmetric_stress<double>(sigma_full);
points_to_sigma[point] = sigma;
points_to_K[point] = Keff;
points_to_G[point] = Geff;
points_to_Fp[point] = Fp;
points_to_ep[point] = ep;
}
};
hpc::for_each(hpc::device_policy(), s.element_sets[material], functor);
}
HPC_NOINLINE inline void
Mie_Gruneisen_eos(input const& in, state& s, material_index const material)
{
auto const points_to_sigma = s.sigma.begin();
auto const points_to_K = s.K.begin();
auto const points_to_dp_de = s.dp_de.begin();
auto const points_to_rho = s.rho.cbegin();
auto const points_to_e = s.e.cbegin();
auto const points_to_c = s.c.begin();
auto const K0 = in.K0[material];
auto const rho0 = in.rho0[material];
auto const gamma = in.gamma[material];
auto const s0 = in.s[material];
auto const c0 = std::sqrt(K0 / rho0);
auto const elements_to_points = s.elements * s.points_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
for (auto const point : elements_to_points[element]) {
auto const rho = points_to_rho[point];
auto const e = points_to_e[point];
auto K = hpc::pressure<double>(0.0);
auto p = hpc::pressure<double>(0.0);
auto dp_de = hpc::density<double>(0.0);
auto c = hpc::speed<double>(0.0);
Mie_Gruneisen_eos_point(rho0, rho, e, gamma, c0, s0, p, K, dp_de, c);
auto const sigma = points_to_sigma[point].load();
auto const vol = hpc::trace(sigma) / 3;
points_to_sigma[point] = sigma - (p + vol);
points_to_K[point] = K;
points_to_dp_de[point] = dp_de;
points_to_c[point] = c;
}
};
hpc::for_each(hpc::device_policy(), s.element_sets[material], functor);
}
HPC_NOINLINE inline void
ideal_gas(input const& in, state& s, material_index const material)
{
auto const points_to_rho = s.rho.cbegin();
auto const points_to_e = s.e.cbegin();
auto const points_to_sigma = s.sigma.begin();
auto const points_to_K = s.K.begin();
auto const gamma = in.gamma[material];
auto const elements_to_points = s.elements * s.points_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
for (auto const point : elements_to_points[element]) {
auto const rho = points_to_rho[point];
assert(rho > 0.0);
auto const e = points_to_e[point];
assert(e > 0.0);
auto const p = (gamma - 1.0) * (rho * e);
assert(p > 0.0);
auto const old_sigma = points_to_sigma[point].load();
auto const new_sigma = deviatoric_part(old_sigma) - p;
points_to_sigma[point] = new_sigma;
auto const K = gamma * p;
assert(K > 0.0);
points_to_K[point] = K;
}
};
hpc::for_each(hpc::device_policy(), s.element_sets[material], functor);
}
HPC_NOINLINE HPC_HOST_DEVICE inline hpc::pressure<double>
kappa_prime(hpc::pressure<double> const mu, hpc::adimensional<double> const x)
{
return 200.0 * mu * std::log(x) / x;
}
HPC_NOINLINE inline void
update_element_force(state& s)
{
auto const comptet_stabilize = s.use_comptet_stabilization;
auto const points_to_K = s.K.cbegin();
auto const points_to_JavgJ = s.JavgJ.cbegin();
auto const points_to_sigma = s.sigma.cbegin();
auto const points_to_V = s.V.cbegin();
auto const point_nodes_to_grad_N = s.grad_N.cbegin();
auto const point_nodes_to_f = s.element_f.begin();
auto const points_to_point_nodes = s.points * s.nodes_in_element;
auto functor = [=] HPC_DEVICE(point_index const point) {
auto const sigma = points_to_sigma[point].load();
auto const V = points_to_V[point];
auto const point_nodes = points_to_point_nodes[point];
for (auto const point_node : point_nodes) {
auto const grad_N = point_nodes_to_grad_N[point_node].load();
if (comptet_stabilize == true) {
auto const JavgJ = points_to_JavgJ[point];
auto const K = points_to_K[point];
auto const f = -((sigma - kappa_prime(K, JavgJ) * hpc::symmetric_stress<double>::identity()) * grad_N) * V;
point_nodes_to_f[point_node] = f;
} else {
auto const f = -(sigma * grad_N) * V;
point_nodes_to_f[point_node] = f;
}
}
};
hpc::for_each(hpc::device_policy(), s.points, functor);
}
HPC_NOINLINE inline void
assemble_contact_force(state& s)
{
auto const nodes_to_x = s.x.cbegin();
auto const nodes_to_mass = s.mass.cbegin();
auto const nodes_to_f = s.f.begin();
auto const penalty_coeff = s.contact_penalty_coeff;
auto functor = [=] HPC_DEVICE(node_index const node) {
auto node_f = hpc::force<double>::zero();
auto const x = nodes_to_x[node].load();
auto const m = nodes_to_mass[node];
auto const z = x(2);
if (z > 0.0) {
node_f(2) = -penalty_coeff * m * z;
}
auto const f_old = nodes_to_f[node].load();
auto const f_new = f_old + node_f;
nodes_to_f[node] = f_new;
};
hpc::for_each(hpc::device_policy(), s.nodes, functor);
}
HPC_NOINLINE inline void
assemble_internal_force(state& s)
{
auto const nodes_to_node_elements = s.nodes_to_node_elements.cbegin();
auto const node_elements_to_elements = s.node_elements_to_elements.cbegin();
auto const node_elements_to_nodes_in_element = s.node_elements_to_nodes_in_element.cbegin();
auto const point_nodes_to_f = s.element_f.cbegin();
auto const nodes_to_f = s.f.begin();
auto const points_to_point_nodes = s.points * s.nodes_in_element;
auto const elements_to_points = s.elements * s.points_in_element;
auto functor = [=] HPC_DEVICE(node_index const node) {
auto node_f = hpc::force<double>::zero();
auto const node_elements = nodes_to_node_elements[node];
for (auto const node_element : node_elements) {
auto const element = node_elements_to_elements[node_element];
auto const node_in_element = node_elements_to_nodes_in_element[node_element];
for (auto const point : elements_to_points[element]) {
auto const point_nodes = points_to_point_nodes[point];
auto const point_node = point_nodes[node_in_element];
auto const point_f = point_nodes_to_f[point_node].load();
node_f = node_f + point_f;
}
}
auto const f_old = nodes_to_f[node].load();
auto const f_new = f_old + node_f;
nodes_to_f[node] = f_new;
};
hpc::for_each(hpc::device_policy(), s.nodes, functor);
}
HPC_NOINLINE inline void
assemble_external_force(state&)
{
// Just a stub for now
}
HPC_NOINLINE inline void
update_nodal_force(state& s)
{
hpc::fill(hpc::device_policy(), s.f, hpc::force<double>::zero());
assemble_internal_force(s);
assemble_external_force(s);
if (s.use_penalty_contact == true) {
assemble_contact_force(s);
}
}
HPC_NOINLINE inline void
zero_displacement(
hpc::device_vector<node_index, int> const& domain,
hpc::vector3<double> const axis,
hpc::device_array_vector<hpc::position<double>, node_index>* u_vector)
{
auto const nodes_to_u = u_vector->begin();
auto functor = [=] HPC_DEVICE(node_index const node) {
auto const old_u = nodes_to_u[node].load();
auto const new_u = old_u - axis * (old_u * axis);
nodes_to_u[node] = new_u;
};
hpc::for_each(hpc::device_policy(), domain, functor);
}
HPC_NOINLINE inline void
zero_velocity(
hpc::device_vector<node_index, int> const& domain,
hpc::vector3<double> const axis,
hpc::device_array_vector<hpc::position<double>, node_index>* v_vector)
{
auto const nodes_to_v = v_vector->begin();
auto functor = [=] HPC_DEVICE(node_index const node) {
auto const old_v = nodes_to_v[node].load();
auto const new_v = old_v - axis * (old_v * axis);
nodes_to_v[node] = new_v;
};
hpc::for_each(hpc::device_policy(), domain, functor);
}
HPC_NOINLINE inline void
zero_acceleration(
hpc::device_vector<node_index, int> const& domain,
hpc::vector3<double> const axis,
hpc::device_array_vector<hpc::acceleration<double>, node_index>* a_vector)
{
auto const nodes_to_a = a_vector->begin();
auto functor = [=] HPC_DEVICE(node_index const node) {
auto const old_a = nodes_to_a[node].load();
auto const new_a = old_a - axis * (old_a * axis);
nodes_to_a[node] = new_a;
};
hpc::for_each(hpc::device_policy(), domain, functor);
}
HPC_NOINLINE inline void
prescribed_displacement(
hpc::device_vector<node_index, int> const& domain,
hpc::vector3<double> const axis,
hpc::length<double> const u,
hpc::device_array_vector<hpc::position<double>, node_index>* u_vector)
{
auto const nodes_to_u = u_vector->begin();
auto functor = [=] HPC_DEVICE(node_index const node) {
auto const old_u = nodes_to_u[node].load();
auto const new_u = old_u - axis * (old_u * axis) + u * axis;
nodes_to_u[node] = new_u;
};
hpc::for_each(hpc::device_policy(), domain, functor);
}
HPC_NOINLINE inline void
prescribed_velocity(
hpc::device_vector<node_index, int> const& domain,
hpc::vector3<double> const axis,
hpc::speed<double> const v,
hpc::device_array_vector<hpc::velocity<double>, node_index>* v_vector)
{
auto const nodes_to_v = v_vector->begin();
auto functor = [=] HPC_DEVICE(node_index const node) {
auto const old_v = nodes_to_v[node].load();
auto const new_v = old_v - axis * (old_v * axis) + v * axis;
nodes_to_v[node] = new_v;
};
hpc::for_each(hpc::device_policy(), domain, functor);
}
HPC_NOINLINE inline void
prescribed_acceleration(
hpc::device_vector<node_index, int> const& domain,
hpc::vector3<double> const axis,
hpc::speed_rate<double> const a,
hpc::device_array_vector<hpc::acceleration<double>, node_index>* a_vector)
{
auto const nodes_to_a = a_vector->begin();
auto functor = [=] HPC_DEVICE(node_index const node) {
auto const old_a = nodes_to_a[node].load();
auto const new_a = old_a - axis * (old_a * axis) + a * axis;
nodes_to_a[node] = new_a;
};
hpc::for_each(hpc::device_policy(), domain, functor);
}
HPC_NOINLINE inline void
enforce_prescribed_displacement(input const& in, state& s)
{
for (auto const& cond : in.prescribed_displacement_conditions) {
prescribed_displacement(s.node_sets[cond.boundary], cond.axis, cond.value, &s.u);
}
}
HPC_NOINLINE inline void
enforce_prescribed_velocity(input const& in, state& s)
{
for (auto const& cond : in.prescribed_velocity_conditions) {
prescribed_velocity(s.node_sets[cond.boundary], cond.axis, cond.value, &s.v);
}
}
HPC_NOINLINE inline void
enforce_prescribed_acceleration(input const& in, state& s)
{
for (auto const& cond : in.prescribed_acceleration_conditions) {
prescribed_acceleration(s.node_sets[cond.boundary], cond.axis, cond.value, &s.a);
}
}
HPC_NOINLINE inline void
update_symm_grad_v(state& s)
{
auto const elements_to_element_nodes = s.elements * s.nodes_in_element;
auto const elements_to_points = s.elements * s.points_in_element;
auto const points_to_point_nodes = s.points * s.nodes_in_element;
auto const element_nodes_to_nodes = s.elements_to_nodes.cbegin();
auto const point_nodes_to_grad_N = s.grad_N.cbegin();
auto const nodes_to_v = s.v.cbegin();
auto const points_to_symm_grad_v = s.symm_grad_v.begin();
auto const nodes_in_element = s.nodes_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
for (auto const point : elements_to_points[element]) {
auto grad_v = hpc::velocity_gradient<double>::zero();
auto const element_nodes = elements_to_element_nodes[element];
auto const point_nodes = points_to_point_nodes[point];
for (auto const node_in_element : nodes_in_element) {
auto const element_node = element_nodes[node_in_element];
auto const point_node = point_nodes[node_in_element];
node_index const node = element_nodes_to_nodes[element_node];
auto const v = nodes_to_v[node].load();
auto const grad_N = point_nodes_to_grad_N[point_node].load();
grad_v = grad_v + outer_product(v, grad_N);
}
hpc::symmetric_velocity_gradient<double> const symm_grad_v(grad_v);
points_to_symm_grad_v[point] = symm_grad_v;
}
};
hpc::for_each(hpc::device_policy(), s.elements, functor);
}
HPC_NOINLINE inline void
stress_power(state& s)
{
auto const points_to_sigma = s.sigma.cbegin();
auto const points_to_symm_grad_v = s.symm_grad_v.cbegin();
auto const points_to_rho_e_dot = s.rho_e_dot.begin();
auto functor = [=] HPC_DEVICE(point_index const point) {
auto const symm_grad_v = points_to_symm_grad_v[point].load();
auto const sigma = points_to_sigma[point].load();
auto const rho_e_dot = inner_product(sigma, symm_grad_v);
points_to_rho_e_dot[point] = rho_e_dot;
};
hpc::for_each(hpc::device_policy(), s.points, functor);
}
HPC_NOINLINE inline void
update_e(
state& s,
hpc::time<double> const dt,
material_index const material,
hpc::device_vector<hpc::specific_energy<double>, point_index> const& old_e_vector)
{
auto const points_to_rho_e_dot = s.rho_e_dot.cbegin();
auto const points_to_rho = s.rho.cbegin();
auto const points_to_old_e = old_e_vector.cbegin();
auto const points_to_e = s.e.begin();
auto const elements_to_points = s.elements * s.points_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
for (auto const point : elements_to_points[element]) {
auto const rho_e_dot = points_to_rho_e_dot[point];
auto const rho = points_to_rho[point];
auto const e_dot = rho_e_dot / rho;
auto const old_e = points_to_old_e[point];
auto const e = old_e + dt * e_dot;
points_to_e[point] = e;
}
};
hpc::for_each(hpc::device_policy(), s.element_sets[material], functor);
}
HPC_NOINLINE inline void
apply_viscosity(input const& in, state& s)
{
auto const points_to_symm_grad_v = s.symm_grad_v.cbegin();
auto const elements_to_h_art = s.h_art.cbegin();
auto const points_to_c = s.c.cbegin();
auto const c1 = in.quadratic_artificial_viscosity;
auto const c2 = in.linear_artificial_viscosity;
auto const points_to_rho = s.rho.cbegin();
auto const points_to_sigma = s.sigma.begin();
auto const points_to_nu_art = s.nu_art.begin();
auto const elements_to_points = s.elements * s.points_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
auto const h_art = elements_to_h_art[element];
for (auto const point : elements_to_points[element]) {
auto const symm_grad_v = points_to_symm_grad_v[point].load();
auto const div_v = trace(symm_grad_v);
if (div_v >= 0.0) {
points_to_nu_art[point] = 0.0;
} else {
auto const c = points_to_c[point];
auto const nu_art = c1 * ((-div_v) * (h_art * h_art)) + c2 * c * h_art;
points_to_nu_art[point] = nu_art;
auto const rho = points_to_rho[point];
auto const sigma_art = (rho * nu_art) * symm_grad_v;
auto const sigma = points_to_sigma[point].load();
auto const sigma_tilde = sigma + sigma_art;
points_to_sigma[point] = sigma_tilde;
}
}
};
hpc::for_each(hpc::device_policy(), s.elements, functor);
}
HPC_NOINLINE inline void
volume_average_J(state& s)
{
auto const comptet_stabilize = s.use_comptet_stabilization;
auto const points_to_V = s.V.cbegin();
auto const points_to_F = s.F_total.begin();
auto const points_to_JavgJ = s.JavgJ.begin();
auto const elements_to_points = s.elements * s.points_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
hpc::volume<double> total_V0 = 0.0;
hpc::volume<double> total_V = 0.0;
for (auto const point : elements_to_points[element]) {
auto const F = points_to_F[point].load();
auto const J = determinant(F);
auto const V = points_to_V[point];
auto const V0 = V / J;
total_V0 += V0;
total_V += V;
}
auto const average_J = total_V / total_V0;
for (auto const point : elements_to_points[element]) {
auto const old_F = points_to_F[point].load();
auto const old_J = determinant(old_F);
auto const new_F = cbrt(average_J / old_J) * old_F;
if (comptet_stabilize == true) points_to_JavgJ[point] = average_J / old_J;
points_to_F[point] = new_F;
}
};
hpc::for_each(hpc::device_policy(), s.elements, functor);
}
HPC_NOINLINE inline void
volume_average_rho(state& s)
{
auto const points_to_V = s.V.cbegin();
auto const points_to_rho = s.rho.begin();
auto const elements_to_points = s.elements * s.points_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
hpc::mass<double> mass = 0.0;
hpc::volume<double> total_V = 0.0;
for (auto const point : elements_to_points[element]) {
auto const rho = points_to_rho[point];
auto const V = points_to_V[point];
mass += V * rho;
total_V += V;
}
auto const average_rho = mass / total_V;
for (auto const point : elements_to_points[element]) {
points_to_rho[point] = average_rho;
}
};
hpc::for_each(hpc::device_policy(), s.elements, functor);
}
HPC_NOINLINE inline void
volume_average_e(state& s)
{
auto const points_to_V = s.V.cbegin();
auto const points_to_rho = s.rho.cbegin();
auto const points_to_e = s.e.begin();
auto const elements_to_points = s.elements * s.points_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
hpc::energy<double> energy = 0.0;
hpc::mass<double> mass = 0.0;
for (auto const point : elements_to_points[element]) {
auto const rho = points_to_rho[point];
auto const e = points_to_e[point];
auto const V = points_to_V[point];
energy += V * (rho * e);
mass += V * rho;
}
auto const average_e = energy / mass;
for (auto const point : elements_to_points[element]) {
points_to_e[point] = average_e;
}
};
hpc::for_each(hpc::device_policy(), s.elements, functor);
}
HPC_NOINLINE inline void
volume_average_p(state& s)
{
auto const comptet_stabilize = s.use_comptet_stabilization;
auto const points_to_K = s.K.cbegin();
auto const points_to_JavgJ = s.JavgJ.cbegin();
auto const points_to_V = s.V.cbegin();
auto const points_to_sigma = s.sigma.begin();
auto const elements_to_points = s.elements * s.points_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
hpc::volume<double> total_V = 0.0;
decltype(hpc::pressure<double>() * hpc::volume<double>()) p_integral = 0.0;
for (auto const point : elements_to_points[element]) {
auto const sigma = points_to_sigma[point].load();
auto const p = -(1.0 / 3.0) * trace(sigma);
auto const V = points_to_V[point];
if (comptet_stabilize == true) {
auto const JavgJ = points_to_JavgJ[point];
auto const K = points_to_K[point];
p_integral += V * (p - kappa_prime(K, JavgJ));
} else {
p_integral += V * p;
}
total_V += V;
}
auto const average_p = p_integral / total_V;
for (auto const point : elements_to_points[element]) {
auto const old_sigma = points_to_sigma[point].load();
auto const new_sigma = deviatoric_part(old_sigma) - average_p;
points_to_sigma[point] = new_sigma;
}
};
hpc::for_each(hpc::device_policy(), s.elements, functor);
}
HPC_NOINLINE inline void
update_single_material_state(
input const& in,
state& s,
material_index const material,
hpc::time<double> const dt,
hpc::device_vector<hpc::pressure<double>, node_index> const& old_p_h)
{
if (in.enable_neo_Hookean[material]) {
neo_Hookean(in, s, material);
}
if (in.enable_variational_J2[material]) {
variational_J2(in, s, material);
}
if (in.enable_ideal_gas[material]) {
if (in.enable_nodal_energy[material]) {
nodal_ideal_gas(in, s, material);
} else {
ideal_gas(in, s, material);
}
}
if (in.enable_nodal_energy[material]) {
interpolate_e(s, material);
}
if (in.enable_Mie_Gruneisen_eos[material]) {
Mie_Gruneisen_eos(in, s, material);
}
if (in.enable_nodal_pressure[material] || in.enable_nodal_energy[material]) {
if (in.enable_p_prime[material]) {
update_sigma_with_p_h_p_prime(in, s, material, dt, old_p_h);
} else {
update_sigma_with_p_h(s, material);
}
}
}
HPC_NOINLINE inline void
update_material_state(
input const& in,
state& s,
hpc::time<double> const dt,
hpc::host_vector<hpc::device_vector<hpc::pressure<double>, node_index>, material_index> const& old_p_h)
{
hpc::fill(hpc::device_policy(), s.sigma, hpc::symmetric_stress<double>::zero());
hpc::fill(hpc::device_policy(), s.G, hpc::pressure<double>(0.0));
for (auto const material : in.materials) {
update_single_material_state(in, s, material, dt, old_p_h[material]);
}
}
HPC_NOINLINE inline void
update_a_from_material_state(input const& in, state& s)
{
update_element_force(s);
update_nodal_force(s);
update_a(s);
for (auto const& cond : in.zero_acceleration_conditions) {
zero_acceleration(s.node_sets[cond.boundary], cond.axis, &s.a);
}
enforce_prescribed_acceleration(in, s);
}
HPC_NOINLINE inline void
midpoint_predictor_corrector_step(input const& in, state& s)
{
hpc::fill(hpc::device_policy(), s.u, hpc::displacement<double>(0.0, 0.0, 0.0));
hpc::device_array_vector<hpc::velocity<double>, node_index> old_v(s.nodes.size());
hpc::copy(hpc::device_policy(), s.v, old_v);
hpc::device_vector<hpc::specific_energy<double>, point_index> old_e(s.points.size());
hpc::copy(hpc::device_policy(), s.e, old_e);
hpc::host_vector<hpc::device_vector<hpc::pressure<double>, node_index>, material_index> old_p_h(in.materials.size());
hpc::host_vector<hpc::device_vector<hpc::specific_energy<double>, node_index>, material_index> old_e_h(
in.materials.size());
for (auto const material : in.materials) {
if (in.enable_nodal_pressure[material]) {
old_p_h[material].resize(s.nodes.size());
hpc::copy(hpc::device_policy(), s.p_h[material], old_p_h[material]);
}
if (in.enable_nodal_energy[material]) {
if (in.enable_p_prime[material]) {
old_p_h[material].resize(s.nodes.size());
hpc::copy(hpc::device_policy(), s.p_h[material], old_p_h[material]);
}
old_e_h[material].resize(s.nodes.size());
hpc::copy(hpc::device_policy(), s.e_h[material], old_e_h[material]);
}
}
constexpr int npc = 2;
for (int pc = 0; pc < npc; ++pc) {
if (pc == 0) advance_time(in, s.max_stable_dt, s.next_file_output_time, &s.time, &s.dt);
update_v(s, s.dt / 2.0, old_v);
enforce_prescribed_velocity(in, s);
update_symm_grad_v(s);
bool const last_pc = (pc == (npc - 1));
auto const half_dt = last_pc ? s.dt : s.dt / 2.0;
for (auto const material : in.materials) {
if (in.enable_nodal_pressure[material]) {
update_p_h(s, half_dt, material, old_p_h[material]);
}
}
stress_power(s);
for (auto const material : in.materials) {
if (in.enable_nodal_energy[material]) {
update_e_h_dot_from_a(in, s, material);
update_e_h(s, half_dt, material, old_e_h[material]);
} else {
update_e(s, half_dt, material, old_e);
}
}
if (in.enable_e_averaging) volume_average_e(s);
update_u(s, half_dt);
enforce_prescribed_displacement(in, s);
if (last_pc) {
update_v(s, s.dt, old_v);
enforce_prescribed_velocity(in, s);
}
update_x(s);
update_reference(s);
if (in.enable_J_averaging) volume_average_J(s);
if (in.enable_rho_averaging) volume_average_rho(s);
for (auto const material : in.materials) {
if (in.enable_nodal_energy[material]) {
update_nodal_density(s, material);
interpolate_rho(s, material);
}
}
if (in.enable_adapt) {
update_quality(in, s);
update_min_quality(s);
}
update_symm_grad_v(s);
update_h_min(in, s);
if (in.enable_viscosity) update_h_art(in, s);
update_material_state(in, s, half_dt, old_p_h);
for (auto const material : in.materials) {
if (in.enable_nodal_energy[material] && !in.enable_Mie_Gruneisen_eos[material]) {
interpolate_K(s, material);
}
}
update_c(s);
if (in.enable_viscosity) apply_viscosity(in, s);
if (in.enable_p_averaging) volume_average_p(s);
if (last_pc) update_element_dt(s);
if (last_pc) find_max_stable_dt(s);
update_a_from_material_state(in, s);
for (auto const material : in.materials) {
if (in.enable_nodal_pressure[material]) {
update_p_h_dot_from_a(in, s, material);
}
if (!(in.enable_nodal_pressure[material] || in.enable_nodal_energy[material])) {
update_p(s, material);
}
}
}
}
HPC_NOINLINE inline void
velocity_verlet_step(input const& in, state& s)
{
hpc::host_vector<hpc::device_vector<hpc::pressure<double>, node_index>, material_index> old_p_h(in.materials.size());
advance_time(in, s.max_stable_dt, s.next_file_output_time, &s.time, &s.dt);
update_v(s, s.dt / 2.0, s.v);
hpc::fill(hpc::serial_policy(), s.u, hpc::displacement<double>(0.0, 0.0, 0.0));
update_u(s, s.dt);
update_x(s);
update_reference(s);
if (in.enable_J_averaging) volume_average_J(s);
update_h_min(in, s);
update_material_state(in, s, s.dt, old_p_h);
update_c(s);
update_element_dt(s);
find_max_stable_dt(s);
update_a_from_material_state(in, s);
for (auto const material : in.materials) {
if (in.enable_nodal_pressure[material]) {
update_p_h_dot_from_a(in, s, material);
} else {
update_p(s, material);
}
}
update_v(s, s.dt / 2.0, s.v);
}
HPC_NOINLINE inline void
time_integrator_step(input const& in, state& s)
{
switch (in.time_integrator) {
case MIDPOINT_PREDICTOR_CORRECTOR: midpoint_predictor_corrector_step(in, s); break;
case VELOCITY_VERLET: velocity_verlet_step(in, s); break;
}
}
template <class Quantity>
HPC_NOINLINE inline void
initialize_material_scalar(
Quantity const scalar,
state& s,
material_index const material,